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Abstrak 

Rangkaian Neural Rambatan Balik (BPNN) merupakan salah satu model yang paling 
lazim digunakan bagi ramalan pasaran saham disebabkan kemampuannya sebagai 
penganggar universal. Namun begitu, proses latihan BPNN berasakan Kaedah Kuasa 
Dua Terkecil (OLS) cenderung menghasilkan anggaran pemberat yang tidak teguh 
apabila terdapat nilai terpencil dalam data. Akibatnya, prestasi ramalan model BPNN 
terjejas. Bagi menangani isu ini, kajian ini mencadangkan pendekatan alternatif 
dengan menggantikan OLS kepada algoritma Pertumbuhan Biji Kurma Kuasa Dua 
Median Terkecil (DPSG-LMedS). Pendekatan ini bertujuan untuk meningkatkan 
ketepatan ramalan pada tahap pencemaran data yang berbeza dalam pasaran saham. 
DPSG-LMedS melibatkan lima fasa, iaitu melatih rangkaian secara berulang dengan 
meminimumkan ralat median yang dianggarkan, membuang nilai terpencil 
berdasarkan sisihan piawai yang teguh, melatih semula menggunakan data yang 
telah disaring, dan menghentikan proses apabila ralat LMedS terbaik memenuhi 
kriteria yang ditetapkan. Seterusnya prestasi model dinilai menggunakan data 
simulasi dan data sebenar. Dalam analisis simulasi, ketepatan model baharu dinilai 
berdasarkan tahap pencemaran data yang berbeza (0% hingga 65%), konfigurasi lag 
input (5 hingga 45), dan nod tersembunyi (5 hingga 45). Data sebenar bagi harga 
penutupan pasaran saham FBM KLCI digunakan untuk membandingkan prestasi 
model baharu dengan BPNN dan BPNN bersama LMedS. Model dengan prestasi 
terbaik ditentukan berdasarkan nilai terendah bagi Ralat Punca Min Kuasa Dua 
(RMSE) dan Ralat Punca Min Kuasa Dua Geometrik (GRMSE). Keputusan daripada 
analisis simulasi menunjukkan bahawa model baharu berprestasi baik pada semua 
tahap pencemaran data, dengan konfigurasi lag input yang sederhana dan nod 
tersembunyi yang terendah. Perbandingan menggunakan data sebenar menunjukkan 
bahawa model baharu mengatasi prestasi model-model lain. Model baharu ini 
menawarkan model peramalan yang lebih dipercayai dan dijangka dapat menyokong 
pelabur, ahli ekonomi, pembuat dasar, serta institusi kewangan dalam membuat 
keputusan yang lebih tepat dan berinformasi. Selain itu, ia turut menyumbang 
kepada pembangunan teknik rangkaian neural yang lebih teguh bagi aplikasi ramalan 
kewangan. 
 

 

Kata Kunci: Algoritma Pertumbuhan Biji Kurma, Kuasa Dua Median Terkecil, 

Nilai Terpencil, Rangkaian Neural Rambatan Balik Teguh, Ramalan Pasaran Saham. 
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Abstract 

Backpropagation Neural Network (BPNN) is one of the most commonly used 
models for stock market prediction due to its ability as universal estimators. 
However, the Ordinary Least Squares (OLS)-based training in BPNN leads to non-
robust weightage estimates in the presence of outliers. Consequently, it affects the 
prediction performance of the BPNN model. Addressing this issue, this study 
proposes an alternative approach by replacing OLS with Date Palm Seed Growth 
Least Median Squares (DPSG-LMedS) algorithm. This approach aims to improve 
the prediction accuracy at different levels of data contamination in stock market. 
DPSG-LMedS involve five phases which are training the network iteratively by 
minimizing the median of estimated errors, removing outliers based on robust 
standard deviation, retraining on the cleaned data, and stopping once the best LMedS 
errors meet the setting criteria. Next, the model performance is evaluated using 
simulated and real data. In simulation analysis, the accuracy of the new model is 
assessed based on different levels of data contamination (0% to 65%), input lags (5 
to 45), and hidden node (5 to 45) configurations. Real data of FBM KLCI stock 
market closing prices is used to compared the performance of the new model with 
BPNN and BPNN with LMedS. The best-performing model is determined based on 
the lowest values of Root Mean Square Error (RMSE) and Geometric Root Mean 
Square Error (GRMSE). Results from simulated analysis shows that the new model 
performed well at all levels of data contamination with configuration moderate lags 
input and lowest hidden nodes. Comparison using real data indicate that the new 
model outperformed other models. This new model offers a more reliable predicting 
model and is expected to support investors, economists, policymakers, and financial 
institutions in making more accurate and informed decisions. Additionally, it 
contributes to the development of robust neural network techniques for financial 
prediction applications. 
 

Keywords: Date Palm Seed Growth Algorithm, Least Median Square, Outliers, 

Robust Backpropagation Neural Network, Stock Market Prediction. 
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CHAPTER 1 

INTRODUCTION  

1.1 Introduction 

This chapter explains the research background, problem statement, research questions, 

research objectives, the scope of the study, and the significance of this research 

accordingly. There are altogether seven sections in this chapter. The research 

background of the study is presented in Section 1.2 and consists of stock market 

prediction focused on Financial Times Stock Exchange (FTSE) Bursa Malaysia Kuala 

Lumpur Composite Index (FBM KLCI) dataset. Section 1.3 highlights the problem 

statement of this research. Furthermore, the research questions and the research 

objectives are presented in Section 1.4 and Section 1.5 respectively. Then, Section 1.6 

explains the scope and limitations of this research work. In Section 1.7, the 

significance of the research work is presented according to the research objectives. 

Last but not least, the summary of this chapter is presented in Section 1.8. 

1.2 Research Background 

Decreasing economy in Malaysia due to a lacks of initiatives is one of the hot 

problems. The Chief Economist Bank Muamalat Malaysia Bhd, Mohd Afzanizam 

states that the ringgit appears to be undergoing a technical correction as it rose 

relatively high in early January 2024 (BERNAMA, 2024). This problem shows that 

the economy in Malaysia is not good, and it is one of the reasons why investors need 

to learn how to invest in stock markets. 
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Bursa Malaysia, established in 1930 under the name Singapore Stockbrokers' 

Association, holds the distinction of being the first formal securities exchange. Over 

time, the exchange underwent several name changes. In 2004, it transitioned from the 

Kuala Lumpur Stock Exchange (KLSE) to Bursa Malaysia, driven by the goal of 

enhancing its customer-centric and market-oriented approach. 

The exchange offers comprehensive services, including settlement, depository 

services, listing, exchange functions, and clearing operations, all of which are fully 

integrated. By the close of 2008, a fully electronic trading system had been 

introduced. According to the exchange's website (Kenton, 2020), around 900 firms 

are eager to utilize this system for fundraising through various business practices. 

Ensuring the accuracy of predicted values is crucial, emphasizing the significance of 

employing the most effective trading system.  

Stock market forecasting presents a prominent and highly significant endeavor within 

the realm of economics. This challenge arises from the presence of outliers in stock 

market data. Predicting the behavior of the stock market is widely recognized as one 

of the most formidable tasks in this field (Jin et al., 2020). Al-Mashhadani et al. 

(2021) emphasize that stock price prediction is an extremely challenging task due to 

the complexity and numerous aspects involved. Furthermore, the stock market 

remains characterized by its volatility and dynamic nature, further complicating 

prediction efforts (Zhang et al., 2021). Consequently, stock market prediction poses a 

considerable dilemma for investors seeking to make informed decisions on where to 

allocate their funds for profitable returns (Gandhmal & Kumar, 2019).  
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Stock market prediction involves the utilization of input variables encompassing 

fundamental indicators, technical indicators, and external factors, as discussed by 

Kumar et al. in 2020. The first type of input variable is fundamental indicators 

including turnover, expenses, annual reports, assets and liabilities and income 

statements.  The second type is technical indicators that include parameters like Open 

Price, Close Price, High Price, Low Price, and Moving Averages (Kumar et al., 2020). 

Last but not least, external factors that encompass Oil Price, Gold Price, Commodity 

Price, and Exchange Rate are also the type of input variable that can be in stock 

market prediction. Various types of variables can be employed to predict stock market 

behavior. However, this research specifically concentrates on utilizing closing prices 

as the primary dataset for prediction due to its significance in the stock market, 

alongside the varying severity of outlier issues in the data. 

Starting from 2019, the whole world is forced to endure economic hardship due to the 

rapid spread of the Coronavirus Disease 2019 (COVID-19) (Khanthavit, 2021). The 

impacts of COVID-19 on the economy have been significant and disadvantageous 

(Hasanat et al., 2020). The unanticipated recession triggered by the pandemic has 

severely impacted multiple economic sectors, leaving the economy in a state of 

ongoing uncertainty (Gamal et al., 2021). In the Malaysian stock market, the 

pandemic was found positively impact the FBM KLCI and sectoral indices, despite 

the implementation of the Movement Control Order (MCO) and the cessation of most 

economic activities. This scenario worsened the problem of outlier values that exist in 

the FBM KLCI stock market dataset (Basuony et al., 2021). The problem of outliers 
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was identified in the prediction of the Malaysian stock market, as highlighted by 

Seong and Salleh in 2022. 

Outliers are typically regarded as random occurrences that cannot be predicted 

(Naidoo & Du, 2022). In the FBM KLCI dataset, the presence of outliers becomes 

apparent during the training phase when lag variables are introduced. Consequently, 

this study opts for univariate analysis, selecting closing prices as the core dataset. 

Nonetheless, the creation of additional variables becomes necessary to address outlier 

problems. 

According to the findings by Rusiecki (2012), an outlier within a dataset is a 

numerical value that exhibits significant deviation from the rest of the data points. 

These outliers can exert a noticeable impact on measures of central tendency, 

especially the mean, as noted by Mishra et al. in 2019. Within a dataset, outliers can 

disrupt modeling accuracy and influence the estimated parameters, particularly in 

statistical analysis.  

Backpropagation was defined as a supervised learning algorithm used for training 

artificial neural networks. It played a crucial role in minimizing the error between 

predicted and actual outputs by adjusting the weights of the network through a 

process known as gradient descent. This algorithm was essential for enabling neural 

networks to learn from data and improve their performance over time. When it comes 

to the training process of backpropagation in neural networks, outliers can 

significantly affect the weight adjustment process. Even a single outlier can propagate 

its effects throughout the network, potentially leading to inaccuracies in the final 
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results. The significant impact of a single outlier is that it can distort the learning 

process of the neural network, causing it to focus disproportionately on the outlier 

rather than the general pattern of the data. This can lead to poor generalization and 

reduced prediction accuracy. In the context of stock market prediction, this means that 

the model may make erroneous predictions, resulting in potential financial losses for 

investors and speculators. 

The presence of outliers in time series data is a common occurrence, typically ranging 

from 1% to 10% in routine data. Outliers represent data points that deviate 

substantially from the established patterns within the majority of the dataset, as 

explained by Rusiecki in 2013. These values may deviate markedly from the typical 

sample values, either due to measurement errors or because they reflect significant 

features within the data. Previous studies have indicated that the existence of such 

outliers can pose a challenge to conventional least square analysis methods, 

potentially making them formidable competitors.  

Various linear and nonlinear time series approaches are employed to predict stock 

market behavior with the aim of minimizing prediction errors, such as Autoregressive 

Integrated Moving Average (ARIMA) (Hafiz et al., 2019), Neural Network (NN) 

(Averitt & Natarajan, 2018), Long Short-term Memory (LSTM) (Lv et al., 2021), and 

Recurrent Neural Network (RNN) (Reddy et al., 202). However, ARIMA models are 

sensitive towards outliers (Agnieszka & Magdalena, 2018). In such cases, 

preprocessing the data to eliminate these outliers may be necessary before applying 

ARIMA models. Additionally, ARIMA models tend to underperform when applied to 
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long-term forecasts due to the assumption of stationarity in the underlying time series 

data, which may not hold true for long-term predictions (Wang et al., 2023). 

Nonetheless, ARIMA encounters challenges when dealing with practical nonlinear 

problems. Nonlinearity is employed to characterize situations where there is not a 

straightforward or direct relationship between an independent variable and a 

dependent variable (Hayes, 2021). Consequently, as Ma and Ihler noted in 2020, 

linear models tend to outperform more complex structural models. Furthermore, noise 

is a prevalent problem in many forecasting domains, necessitating the application of 

noise-resistant methods for stock market prediction. Accurately forecasting stock 

market prices is undeniably a challenging task (Yiing & Thim, 2015).  

In the realm of Artificial Intelligence (AI), Artificial Neural Networks (ANNs) were  

utilized to enhance the accuracy of stock market prediction, as emphasized by 

Bhardwaj et al. (2020). ANNs outperform traditional statistical methods due to their 

effective handling of both linear and nonlinear time series data, whether it is noisy or 

not (Ashour et al., 2018). A notable advantage of ANNs is their ability to operate 

without requiring prior information about the systems of interest. Since their 

versatility as function approximators, ANNs have gained significant attention from 

practitioners across diverse fields. 

Utilizing an AI approach enables the implementation of advanced automation and 

computational methods to enhance results while reducing errors, as highlighted by 

Chuan et al. (2021). Numerous AI techniques, including Genetic Algorithms, 

Decision Trees Algorithms, Support Vector Machines (SVM), Neural Networks 
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(NN), Deep Learning (DL), and Machine Learning (ML), can be employed to develop 

models capable of addressing complex challenges. 

However, NN is frequently used in AI, especially ANNs. ANNs offer numerous 

advantages in the realm of stock market prediction. As discussed across various 

research articles, ANNs excel in managing complex, non-linear relationships between 

input and output variables, rendering them well-suited for stock market prediction, 

which are influenced by a multitude of factors (Yetis et al., 2014; Selvamuthu et al., 

2019; Chhajer et al., 2022). Moreover, they possess the capability to learn from 

historical data and adapt to evolving market conditions, enhancing their utility in 

predicting future stock prices (Yetis et al., 2014; Bing et al., 2012). 

Furthermore, ANNs can integrate technical analysis components, such as moving 

averages and trading volumes, into their predictions, leading to heightened accuracy 

(Selvamuthu et al., 2019; Oh, 2022). Additionally, ANNs are adept at handling 

substantial volumes of data and discerning patterns that may elude human analysts, 

resulting in more accurate predictions (Oh, 2022). Through a sufficient period of fund 

simulation, ANNs can provide dependable results, empowering investors to make 

confident decisions without the need for daily data analysis (Oh, 2022).  

Overall, ANNs offer several advantages in stock market prediction, encompassing 

their adeptness at handling intricate relationships, adapting to market dynamics, and 

incorporating technical analysis. These attributes make ANNs a valuable tool for 

projecting future stock prices and assisting investors in making well-informed 

choices. 



 

 

 

 

 

8 

 

Another significant concern pertains to the presence of outliers within stock market 

data, which can exert a notable influence on the approximated model, particularly 

when employing the least squares method. Addressing outliers in a time series 

commonly involves identifying these outliers and subsequently applying intervention 

models to investigate their effects. Tsay (1988) notes that the iterative approach 

necessitates multiple iterations between outlier detection and model parameter 

estimation.  

In this context, two particularly useful methods for characterizing data in terms of 

location and dispersion are metrics for mean and variance. When data is devoid of 

outliers, the sample mean 𝑥̅ and variance s2 of a sample 1{ }N
N i iX x ==  typically provide 

reliable estimates of location and dispersion. However, even a solitary observation 

exhibiting significant variability can wield a substantial impact on both the sample 

mean and dispersion matrix when the data is tainted. Consequently, employing robust 

model estimation techniques proves advantageous in situations involving 

contaminated data (Bakar & Midi, 2019). It was referred to as contaminated data 

because extreme values or anomalies could significantly distort the dataset. Failure to 

account for the effects of contaminated data could lead to inaccurate forecasts. 

Nonetheless, the influence of outliers on the neural network training process using 

real stock market data, which may contain contaminated data, results in these outliers 

affecting the data and propagating into subsequent lags. The impact of even a single 

outlier on the dataset was significant, indicating that the presence of multiple outliers 

could further disrupt the network learning process, as highlighted by Jang et al. 
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(2015). This scenario can ultimately lead to erroneous network training and inaccurate 

predictions regarding future stock market behavior.  

In the context of time series data, the term "lag" signifies a specific time interval, 

allowing for the emergence of autocorrelation (Naidoo & Du, 2022). Autocorrelation, 

as explained by Linden and Adams in 2010, refers to the tendency of instances in a 

time series to exhibit correlation with preceding instances. 

Furthermore, the backpropagation neural network (BPNN) exhibits strong 

performance in time series forecasting, particularly when applied to stock price time-

series data, as indicated by Ghasemiyeh et al. (2017). However, it's worth noting that 

the backpropagation learning algorithm, which relies on minimizing the Ordinary 

Least Square (OLS) of the Mean Square Error (MSE) cost function, lacks robustness 

in the presence of outliers, potentially resulting in errors during the data training 

process (El-Melegy et al., 2009). The MSE, a fundamental backpropagation learning 

technique employed in multi-layer feedforward neural networks (MFNNs), quantifies 

the disparity between the desired and actual output (Samantaray & Sahoo, 2020). 

Hence, this study aims to enhance the robustness of the MSE in the backpropagation 

algorithm, which is susceptible to violations due to outliers. This is achieved by 

substituting OLS with Least Median Squares (LMedS) estimators, capable of 

handling up to 50% outliers. However, it's worth noting that, as Rusiecki et al. pointed 

out in 2014, LMedS exhibits notably low efficiency, and errors associated with 

LMedS cannot be minimized through gradient algorithms. To enhance the efficiency 

of the BPNN, the research employed a metaheuristic algorithm.  
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The term 'Metaheuristic' was initially introduced by Glover in 1986 and was later 

described as nature inspired by Askari et al. in 2020. The concept of "nature-inspired 

computing" involves the development of algorithms that tackle optimization problems 

by simulating natural phenomena or biological attributes, as explained by Ma et al. in 

2022. Examples of metaheuristic algorithms include those inspired by plant biology, 

such as the firefly algorithm, whale algorithm, and particle swarm optimization 

algorithms (Gupta et al., 2020; Zhao et al., 2021). Furthermore, metaheuristic 

algorithms represent a contemporary approach to fortifying the BPNN against 

problems like outliers, as highlighted by Mamoudan et al. in 2023. 

Hence, the primary objective of this research was to propose a new metaheuristic 

algorithm termed the Date Palm Seed Growth (DPSG) optimization algorithm. This 

innovative approach is inspired by the growth mechanism of date palm seeds, a 

common agricultural practice in the Middle East where dates are cultivated in sandpits 

and covered with stones. The key focus is to enhance the performance of the BPNN 

model, thereby improving its effectiveness in forecasting stock market trends. This 

enhanced BPNN model is equipped to autonomously adapt and effectively manage 

stock market datasets that are afflicted by challenges like outliers problem. 

1.3 Problem Statement 

ANNs are extensively employed in stock market prediction analysis due to their 

ability to effectively map nonlinear relationships between input and output variables. 

Specifically, BPNN is well-suited for handling large-scale, complex data tasks that 

exhibit nonlinearity. Nonlinearity referred to the complex and non-proportional 
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relationship between stock market inputs (such as prices and indicators) and outputs 

(predictions). In the context of BPNN, the OLS estimators are commonly used. 

However, it's crucial to note that the backpropagation algorithm based on OLS 

struggles to address issues related to outliers.  

In practice, big data sets, such as FBM KLCI data, often present challenges associated 

with outliers. Outliers tend to emerge due to the influence of uncommon and non-

repetitive events. These outliers significantly impact the forecasting process by 

substantially reducing forecast accuracy and introducing bias into parameter 

estimations, as indicated by Hosseinioun in 2016.  

Stock market prediction involves multiple influencing factors; however, this study 

specifically examines univariate data due to the substantial impact of outliers on 

historical price movements. The rationale for utilizing a univariate approach is to 

facilitate a controlled analysis of the BPNN response to extreme fluctuations in stock 

prices as a singular time-dependent variable (Chen et al., 2022). Prior research by 

Anis and Bahar (2021) has highlighted that outliers in stock prices can significantly 

compromise forecasting models, resulting in poor generalization and increased 

prediction errors. By isolating stock price trends and excluding additional variables, 

the effectiveness of the enhanced BPNN model in mitigating the adverse effects of 

outliers could be evaluated. 

Moreover, when working with the FBM KLCI dataset that exhibits outliers, 

performance errors and network over-fitting problems become prevalent. 
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Consequently, the accuracy of stock market predictions is adversely affected when 

dealing with the FBM KLCI dataset afflicted by outliers. 

Metaheuristic algorithms offer a range of advantages, including resilience to 

collinearity and outliers. Building on the inspiration drawn from the growth 

mechanism of date palm seeds, a metaheuristic algorithm was developed to minimize 

LMedS. To address this challenge, this study introduces the LMedS estimator, which 

is proficient at accommodating up to 50% of outliers. Regrettably, as noted in the 

literature by Rusiecki et al. in 2014, LMedS exhibits notably low efficiency, and its 

errors remain unmitigated by gradient algorithms.  

Various metaheuristic techniques, such as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and the Firefly Algorithm (FA), were employed to enhance 

LMedS. These methods aimed to improve the accuracy and robustness of the 

estimator but continued to face challenges related to convergence speed, scalability, 

and escaping local optima. To address these challenges, this research proposed the 

Date Palm Seed Growth Optimization Least Median Square (DPSG-LMedS) 

algorithm to mitigate these limitations. 

1.4 Research Questions 

The objectives of this research are to investigate several questions pertaining to the 

challenges associated with univariate data, as outlined below: 

1. How severe outliers problems of FBM KLCI dataset? 

2. How to improve the predictive accuracy of BPNN model? 
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3. How the performance of the enhanced BPNN model? 

4. Is the enhanced BPNN model reliable? 

1.5 Research Objectives 

The primary aim of this research is to enhance BPNN model, and in pursuit of this 

objective, the following specific goals are set: 

1. To identify the severity of outliers problems within the FBM KLCI dataset. 

2. To develop an enhanced BPNN model for FBM KLCI stock market. 

3. To compare the performance of the enhanced with the ordinary BPNN model 

and BPNN-LMedS model. 

4. To check the reliability of the enhanced BPNN model. 

1.6 Scope of the Study 

The analyzed data focused on the Malaysian stock market, referred to as the FBM 

KLCI stock market (Al-Mashhadani et al., 2021). The FBM KLCI stock market data 

was collected by extracting information from the Yahoo Finance website. The dataset 

encompasses daily records spanning from 2nd January 2018 to 30th December 2022, 

with a specific emphasis on univariate data, specifically the closing prices. The time 

frame of the dataset purposely includes the stock market data during COVID-19 

events (Khairudin et al., 2023). 
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1.7 Significance of the Research 

The enhanced BPNN has the capability to reduce network errors by addressing the 

challenges posed by outliers. By integrating DPSG-LMedS algorithm into BPNN 

model, the network errors can be reduced while addressing the outliers. This leads 

towards the model efficiency and the prediction accuracy (Chen et al., 2024). This 

study holds substantial importance for various stakeholders in the stock market. 

Importantly, the utilization of the enhanced model in the research is anticipated to 

yield enhanced profits for individuals with an interest in the stock market, including 

speculators and investors. Moreover, since the optimization of the model been used, 

the investors can enhance the accuracy of predictions regarding stock prices and 

market movements. This leads to better-informed trading decisions, potentially 

increasing profitability.  

Accurate stock market predictions were crucial for economists in understanding 

market trends and making informed economic forecasts. The enhanced BPNN model 

provided a reliable tool for analyzing market behavior, aiding in the development of 

economic policies and strategies. This study contributed to the academic community 

by presenting a robust neural network model that could be utilized for various 

predictive analyses. Researchers could build upon this work to explore further 

improvements and applications of BPNN in different domains. 

For policymakers, accurate stock market predictions were essential for maintaining 

economic stability. The enhanced BPNN model assisted in monitoring and regulating 
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market activities, ensuring the stability of the FBM KLCI as a measure of the national 

economy within an interconnected global economic landscape. 

The study served as an educational resource for students pursuing studies in finance, 

economics, and data science. It provided insights into the application of advanced 

neural network models in real-world scenarios, fostering a deeper understanding of 

predictive modeling techniques. Overall, this study demonstrated the practical 

benefits of the enhanced BPNN model in improving prediction accuracy and 

supporting various industry players and stakeholders in making informed decisions. 

1.8 Summary 

In this chapter, this research emphasizes the driving force behind the research and 

delve into the common challenges encountered in big data like outliers. Consequently, 

this research formulates research questions aimed at tackling these problems. 

Subsequent to the development of the research questions, this research outlines the 

study's objectives in the following section. Finally, this research portrays the study's 

scope and underscores its significance in the concluding part of this chapter.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Chapter two extensively explores relevant literature concerning stock market 

prediction using backpropagation neural networks (BPNN). Additionally, it delves 

into the literature related to enhancing BPNN through the application of metaheuristic 

approaches. Section 2.2 provides an overview of the literature pertaining to the stock 

market in Malaysia, while Section 2.3 presents a review of previous studies regarding 

neural networks in stock market prediction globally. Section 2.4 presents the 

application of BPNN model in previous research. The literature that specifics the use 

of BPNN model in stock market prediction and outliers’ problem is discussed in 

Section 2.5. Moreover, Section 2.6 has discussed the solving techniques for outliers’ 

problem which has been divided into two subsections; Section 2.6.1 delved into the 

metaheuristic approach while focusing on the least median square (LMedS). The 

component in BPNN modelling has been explained in eight subsections under Section 

2.7. Furthermore, Section 2.8 addresses the validation of time series neural network 

models for stock market prediction. Based on the previous study, the convergence test 

for the enhanced model has been explained in Section 2.9. Finally, Section 2.10 offers 

a comprehensive summary of the chapter's contents. 
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2.2 Stock Market in Malaysia 

The stock market in Malaysia, represented by Bursa Malaysia, has played a pivotal 

role in the nation's economic growth. Early research on the Malaysian stock market, 

such as Lai and Lau (2004), traced its historical development from its beginnings in 

the 1960s, highlighting the influence of commodity trading and government policies. 

Numerous studies, including the work of Lean and Smyth (2010), have examined the 

efficiency of the Malaysian stock market. Researchers have employed various 

methodologies to test whether the market adheres to the Efficient Market Hypothesis 

(EMH) and to what degree. The impact of macroeconomic variables on stock market 

performance in Malaysia has been a recurring theme. The relationship between 

economic indicators like Gross Domestic Product (GDP) growth, inflation, and 

interest rates, and stock market movement has been studied (Ho, 2019). Malaysia's 

prominence in Islamic finance has been investigated in numerous studies. Hassan et 

al., (2022) examined the performance and growth of Islamic indices and funds in 

Malaysia. Corporate governance practices and transparency in financial reporting 

have been scrutinized. The study by Boadi and Amegbe in 2017 explored the 

relationship between corporate governance quality and stock market performance. 

Recent research by Barbosa et al. in 2023 explored the integration of Environmental, 

Social, and Governance (ESG) factors into investment decisions and their 

implications for the Malaysian stock market.  

Research has shown that the development of the Malaysian stock market, as measured 

by market capitalization, has a positive but statistically insignificant relationship with 
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the country's economic growth (Zulikifli et al., 2024). This suggests that while the 

stock market plays an important role, other factors also contribute to Malaysia's 

economic growth. 

At the same time, the performance of the FBM KLCI has been resilient, with the 

index emerging as the second-best performer in ASEAN in the second half of 2023, 

closing the year at 1,454.7 points (Taharem & Fitriyah, 2023). This highlights the 

market's capability to adapt and thrive, solidifying Bursa Malaysia's role as a viable 

platform for fundraising and investing. 

In terms of predicting stock market movements, studies have shown that neural 

network models can be effective in forecasting stock prices in various markets around 

the world, including Malaysia (Bursa, 2024). Therefore, the implementation of neural 

network in stock market prediction globally were discussed further in Section 2.3 to 

understand it further. 

2.3 Neural Network in Stock Market Prediction Globally  

Neural networks were used to predict stock prices in various markets around the 

world. These models use historical stock data, such as prices and trading volume, as 

input to predict future stock prices. The neural network attempts to learn the 

underlying patterns and relationships in the data, which can then be used to make 

predictions. However, predicting stock prices is a challenging task due to the 

complexity and volatility of financial markets, and the accuracy of these predictions 
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can vary. Additionally, it is essential to use a robust evaluation method and consider 

the uncertainty of the predictions to get a more realistic result. 

There were many studies in the literature that used neural networks to predict stock 

prices in various markets around the world. The study by Abdouli et al. (2020) used a 

long short-term memory (LSTM) neural network to predict Tehran Stock Exchange 

(TSE). The authors found that the LSTM model outperformed traditional time series 

models, such as Autoregressive Integrated Moving Average (ARIMA) in terms of 

prediction accuracy.    

Another study by Guresen et al. (2011) applied a Multi-Layer Perceptron (MLP) 

model, to predict National Association of Securities Dealers Automated Quotations 

(NASDAQ) stock exchange. The results showed that the MLP model more accurate 

compared to generalized autoregressive conditional heteroscedasticity MLP 

(GARCH-MLP) and dynamic artificial neural network (DANN) model. 

A study by Liu et al. (2021) used a deep neural network (DNN) to predict the dataset 

provided by Jane Street, which originated from major stock exchanges around the 

world. Jane Street was a financial services firm that engaged in trading a diverse array 

of asset classes across over 200 trading venues in 45 countries worldwide. The 

authors found that the neural network model outperformed others machine learning 

(ML) models, such as Xgboost algorithm and random forest algorithm, in terms of 

prediction accuracy.  
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Research by Lv et al. (2021) used an enhanced model called as LightGBM-optimized 

LSTM model to predict stock prices in the Shanghai and Shenzhen 300 indexes stock 

market, and they found that the LightGBM-optimized LSTM model outperformed 

other deep network models which is Gated Recurrend Unit (GRU) and recurrent 

neural network (RNN). 

Overall, these studies suggest that neural network models can be effective in 

predicting stock prices in various markets around the world. However, it is important 

to keep in mind that stock market prediction is a challenging task, and the results can 

be affected by various factors such as market conditions, economic indicators, and 

company specific events. 

Last but not least, previous research shows that BPNN model is an effective and 

widely used approach for predicting stock prices, outperforming other models in 

terms of accuracy and problem-solving ability. The research that has been used BPNN 

model in predicting stock market has been show in Section 2.4. 

2.4 Backpropagation Neural Network 

Backpropagation (BP) is a fundamental tool in machine learning for efficient training 

(deep) neural networks (Brunel et al., 2019). BP operated through two main 

processes, namely forward propagation and backward propagation. BPNN was 

utilized in various studies, such as image recognition (Du et al., 2022), game 

development (Bhasin & Vaishali, 2017), and healthcare (Torres et al., 2022). 
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In the context of the stock market, the BPNN model was used to predict the stock 

market. BPNN performs well in time series forecasting when it comes to stock price 

time series data (Ghasemiyeh et al., 2017). Prior knowledge about systems of interest 

is not needed. Due to their universal capacity as a function approximator, BPNNs 

have successfully captured the attention of many practitioners in many fields. 

However, in the presence of outliers that may cause errors in the data training process, 

the backpropagation learning algorithm based on the minimization of the mean square 

error (MSE) cost function is not completely robust. Several studies show the presence 

of outliers as discussed in Section 2.5. 

2.5 Backpropagation Neural Network in Stock Market Prediction with the 

Presents of Outliers 

The limitations of BPNN in handling outliers have been discussed in a previous 

studies. Research by Chan et al. (2022) suggests that BPNN can be highly sensitive to 

outliers, which can negatively impact prediction accuracy, making it less suitable for 

datasets with extreme variations.  

In addressing this issue, the selection of an appropriate loss function plays a critical 

role, as it applies to individual data points to quantify the prediction error. Traditional 

loss functions, such as Mean Squared Error (MSE), often amplify the influence of 

outliers due to squared error penalization. Alternative loss functions, such as Mean 

Absolute Error (MAE) and Huber Loss, offer more robust solutions by reducing the 

disproportionate impact of extreme values.  
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At a broader level, the cost function aggregates the loss function across the dataset, 

guiding the optimization process to improve overall model performance. Therefore, 

careful selection of the loss function directly influences the cost function, shaping the 

effectiveness of BPNN in stock market prediction, particularly in datasets containing 

outliers (Zhao et al., 2024).  

Moreover, previous research has compared the forecasting performance of different 

neural network models, including the BPNN model, for stock market returns. The 

results showed that the cerebellar model articulation controller neural network 

(CAMC NN) model made more accurate forecasts than the BPNN model 

(Selvamuthu et al., 2019). 

Outliers or extreme values can have a significant impact on the results of stock market 

analysis and lag variable. The data can skew statistical measures such as the mean and 

standard deviation and can lead to unreliable or misleading conclusions if not properly 

handled.  

Several studies investigated the presence of outliers in stock market data. For 

example, a study by Chen et al. (2022) analyzed the Taiwan stock market and found 

that outliers had a significant impact on the performance of technical trading rules. 

Another study by Zhao et al. (2021) analyzed the Shanghai Stock Exchange and found 

that outliers had a significant impact on the results of event study analysis. 
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There are several methods that can be used to handle outliers in stock market analysis. 

One common method is to simply remove them from the dataset, although this 

approach has the potential to bias the results. Other methods include using robust 

statistical measures, such as the median and interquartile range, and using outlier 

detection algorithms, such as the Tukey method or the Z-score method. The prediction 

result has been combined using the median.  

A bias in the parameter estimation and the outliers on the point forecast may give an 

effect to the forecast accuracy where it will decrease drastically. Outliers can have 

deterious effects on statistical analyses. It also can result in parameter estimation 

biases invalid inferences and weak votality forecasts in financial data (Hosseinioun, 

2016). In numerous real data sets, outliers are a frequent occurrence. In the research 

by Hampel et al. (1974), it showed that outliers typically occur in normal data ranges 

which are from 1% to 10%. To address the outlier problem, two approaches may be 

employed. One approach involves detecting outliers prior to constructing the model 

with high-quality data, a process known as outlier diagnostics (Limas et al., 2004; 

Rousseeuw & Leroy, 1987). Another approach was to employ resistant or robust 

methods, which remained reliable even when some data was tainted  

Last but not least, the outlier percentage has also been focused on in BPNN model in 

order to get cater to the outliers. Previous research regarding the percentage of outliers 

that can be catered for has been shown in Section 2.6. 
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2.6 Outlier Percentage 

The outlier percentage plays a crucial role in refining predictive models, enabling 

analysts to enhance forecast accuracy. Numerous studies have implemented robust 

techniques to improve the performance of BPNN by addressing the impact of outliers. 

Research has shown that a significant portion of literature on outlier percentages 

originates from time series data analysis, as highlighted by Blázquez-García et al. 

(2021). 

In the research by Zhang and Qu (2021), the adaptive genetic algorithm in the 

backpropagation neural network (AGA-BPNN) accommodated only 5% of outliers. 

Furthermore, research addressed 20% of outliers using least trimmed squares (LTS) 

estimators (Beliakov et al., 2011). Additionally, the firefly algorithm applied to the 

least median squares estimator (FFA-LMedS), least trimmed absolute value (LTA), 

and least median of squares (LMedS) improved convergence with 50% of outliers 

(Kamaruddin et al., 2016; Rusiecki et al., 2014). Finally, Wang and Suter (2003) 

demonstrated that the LTS method handled 40% of outliers, while their proposed 

approach, least trimmed symmetry distance (LTSD), accommodated up to 60% of 

outliers. 

2.7 Solving Techniques for Outliers’ Problem 

Dealing with outliers is a crucial step in data analysis and machine learning. Outliers 

can significantly impact the results of statistical analyses and the performance of 

prediction models. One of the techniques that can be used to handle the presence of 
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outliers in financial time series data is a metaheuristic algorithm. Various articles have 

demonstrated the effectiveness of these hybrid neural network metaheuristic 

approaches in enhancing stock market prediction performance (Elhoseny et al., 2022, 

Mamoudan et al., 2023).  

2.7.1 Metaheuristic Approach 

Metaheuristic algorithm is the optimization algorithm where it is inspired by animals 

or nature (Amiri et al., 2024). It is random to find the new methods in order to get the 

solutions that are optimum or close to optimal response. The word random in 

developing the algorithms means that the local optimal solution isn’t restricted to a 

specific answer. The metaheuristic approach can help to enhance the model. There are 

a lot of metaheuristic algorithms that have been developed in previous studies. 

Ghasemiyah et al. (2017) developed a novel algorithm that integrates multiple bio-

inspired optimization methods, including the Ant Colony Algorithm (ACO), Bee 

Colony Optimization Algorithm (BCO), Bat Algorithm (BA), Particle Swarm 

Optimization (PSO), Cuckoo Optimization Algorithm (COA), and Firefly Algorithm 

(FA).  

Moreover, in the study by Farahani and Hajiagha, (2021), an artificial neural network 

(ANN) was optimized using metaheuristic algorithms, including cuckoo search (CS), 

enhanced cuckoo search (ECS), genetic algorithm (GA), and particle swarm 

optimization (PSO). The study compared the performance of the optimized models 

with non-weighted models in predicting stock price indices. Moreover, there is also a 
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study that focused on intraday stock price forecasting and found that the Particle 

Swarm Optimization Optimized Backpropagation Neural Network (PSO-BPNN) 

model yielded the highest prediction accuracy among the tested models (Kumar et al., 

2020). 

Furthermore, there is a study that proposed an efficient hybrid symbiotic organisms 

search feedforward neural network (SOSFFNN) model for stock price prediction. The 

study combined global optimization metaheuristic approaches of symbiotic organisms 

search (SOS), PSO, and GA with the Feedforward Neural Network (FFNN) model for 

effective and efficient prediction of stock price indices (Pillay & Ezugwu, 2019). 

These studies demonstrate the use of metaheuristic algorithms to enhance BPNN 

models in stock market prediction, leading to improved accuracy and performance. 

Zhao et al. (2021) used particle swarm and whale optimization algorithm to improve 

backpropagation neural network. Gupta et al. (2020) found that plant-biology inspired 

algorithm is superior efficiency compared to latest firefly algorithm. 

Other than that, LMedS is the other technique that can also help to enhance the BPNN 

model as being discussed in Section 2.6.2. 

2.7.2 Least Median Square 

The least median square (LMedS) method is a robust regression method which means 

that it is not sensitive to outliers or other violation of assumption of the usual normal 

model (Massart et al., 1986). According to Farida (2019), LMedS is a robust estimator 
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for the presence of outliers and has a high breakdown value, showing better results 

compared to OLS in stock market prediction. Moreover, other research also proved 

that LMedS is better than OLS method in predicting regression parameter on data 

with up to 3% of the percentage of outliers (Foss et al., 2001). 

According to the research by Faraz and Khaloozadeh (2020), this research predicts the 

Iran stock market closing price by using the enhanced model, Least Squares 

Generative Adversarial Network (LSGAN). The result shows that the LSGAN 

outperformed the ordinary model, Generative Adversarial Network (GANs) in stock 

market prediction by using least-squares loss function and z-score method to remove 

outliers. 

2.8 Performance Validation of Time Series Neural Network models for Stock 

Market Prediction 

Validation of the time series models is really needed in order to the prediction of 

stock market. There are a few types of validation such as bootstraps. Awajan et al. 

(2018) validated the model using five techniques namely, Moving Block Bootstrap 

(MBB), Fourier Transform (FT), Holt-Winter (HW), Intrinsic Mode Function (IMF) 

and Empirical Mode Decomposition (EMD) applied to daily stock market from six 

countries. The stock market data were obtained from indices representing the US-S&P 

500, Sri Lanka, Netherlands, Malaysia, France and Australia.  

The findings from the study by Awajan et al. (2018) indicated that Empirical Mode 

Decomposition and Holt-Winter (EMD-HW) bagging forecasting results 
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demonstrated greater accuracy compared to these fourteen forecasting methods. The 

evaluation was based on five error measures: Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Theil’s U-

statistic (TheilU), and Mean Absolute Scaled Error (MASE). 

Other than that, the research by Dantas and Oliveira (2018) focuses on enhancing time 

series forecasting by combining bootstrap aggregation, clusters, and exponential 

smoothing. The research utilizes the modified Moving Blocks Bootstrap (MBB) 

algorithm proposed by Bergmeir et al. (2016) to conduct resampling, which is crucial 

for improving the accuracy of stock market prediction models. The data used in the 

research by Ren et al. (2018) included three types of stock market which are Standard 

& Poor's (S&P), Dow Jones and NASDAQ. 

Block bootstrap methods encompass several variations, including non-overlapping, 

overlapping, and circular approaches, each of which had potential for application in 

time series modeling if appropriate methodologies had been available. In the study 

conducted by Akerstrom (2020), the training data was divided into two subsets: the 

training set and the test set. The test set was required to be sufficiently large to yield 

statistically significant results and to represent the overall dataset comprehensively. 

The generalized training data was utilized to develop a model. To achieve the optimal 

model, the cost function needed to be minimized. 

Validating the performance of time series neural network models on out-of-sample 

data is a critical step before deploying such models for real-world stock market 
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prediction. However, it is equally important to test the convergence and stability of 

the enhanced BPNN model itself to ensure it is optimizing properly and producing 

reliable forecasts. The following section examined the techniques for assessing the 

convergence of the enhanced BPNN model for stock market prediction. 

2.9 Convergence Evaluation for Proposed Algorithm 

The previous study has discussed the performance of ML models, including deep 

learning (DL) models, in predicting stock prices (Sonkavde et al., 2023). According to 

the study by Rizvi and Khalid (2024), the study compares the performance of various 

DL models in predicting stock prices and discusses the importance of selecting 

appropriate features and hyperparameters for improving the accuracy of predictions. 

Moreover, there also a study that proposes a hybrid data analytics framework that 

combines various stock-related information to improve the prediction performance of 

ML models (Daradke, 2022).  

Epochs played a role in training machine learning models for stock market prediction 

by facilitating iterative learning and allowing fine-tuning of model parameters. 

Understanding and optimizing the number of epochs was essential for developing 

robust predictive models that generalized well to new market conditions. 

Epochs and Root Mean Square Error (RMSE) value was used in previous research 

related to stock market predictions that run the convergence tests (Moraitis et al., 

2021). Epochs and iterations are important parameters in training neural networks in 

order to minimize the cost function (Mehmood et al., 2023) The performance of ANN 
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evaluated by using MSE convergence progression versus epochs in stock market 

predictions, while the RMSE value is used to measure the accuracy of the predictive 

results (Moraitis et al., 2021).  

According to the research by Kalaiselvi et al. in 2018, the maximum number of epoch 

that being used in that study is 1000 epochs after predict the stock market with BPNN 

model. Moreover, there is also another study that use 100 up to 1000 epochs in stock 

price prediction using BPNN based on gradient descent with momentum and adaptive 

learning Rate (Dwiarso et al., 2017). Furthermore, in the research by Dahal et al. 

(2023), the research only use 30 epochs in order to test the convergence for LSTM 

and Gated Recurrent Unit (GRU) model. The convergence has been tested in the 

Indian stock market prediction using ANN with 16 to 1000 epochs (Selvamuthu et al., 

2019).  

The number of epochs directly influenced the convergence of the adopted algorithm. 

A small number of epochs could cause the method to converge at a local minimum, 

whereas excessive epochs might lead to overlearning. The maximum number of 

training epoch is 1000, but the stability of the MSE curve usually converged after 22 

to 91 epochs for an ANN model, according to Moraitis et al. (2021).  

2.10 Summary 

In summary, there are still a lot of things that need to be improved. Furthermore, in 

this research, univariate time series was applied. The outlier’s problem can be seen 

from previous research (Vishwakarma et al., 2020).  Therefore, this study aims to 
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enhance the BPNN model to improve stock market forecasting accuracy, achieve the 

lowest possible error rate, and mitigate the impact of outliers. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

 This chapter explains in detail the methodology used in this research. The structure of 

this chapter is according to the research objectives. There are a few parts to answer 

the first objective. In Section 3.2, this thesis explained the background of the data 

which is a real dataset of the Financial Times Stock Exchange (FTSE) Bursa Malaysia 

Kuala Lumpur Composite Index (FBM KLCI) dataset, how the data has been 

collected and the diagnostic test that needed to test the outlier’s problem has been 

discussed in two subsections. Then, in Section 3.3, the process of preprocessing data 

was explained in this part which is data normalization and data partitioning. After 

that, to answer the second objective, Section 3.3.1 and Section 3.32 explained the data 

normalization and data partitioning process respectively. In Section 3.4, the 

backpropagation neural network (BPNN) for stock market prediction explains the 

process and how the ordinary BPNN model works. Next, section 3.5 elaborates on the 

process of the evaluation of the prediction model using error measures where the error 

measures were discussed in different sub-sections which is Section 3.5.1 regarding 

Root Mean Square Error (RMSE) and Section 3.5.2 discusses the Geometric Root 

Mean Square Error (GRMSE). After that, the convergence test was further discussed 

in Section 3.6. Lastly, the summary of Chapter 3 was provided in Section 3.7. 
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3.2 Data Background 

A flowchart illustrating the four phases corresponding to the four objectives of this 

research was developed based on Figure 3.1. 

In the first phase, the data is collected, and a diagnostic test is conducted to achieve 

the first objective which is to identify the severity of outliers problems of the FBM 

KLCI dataset.  

Following this, in the second phase, data preprocessing was conducted by normalizing 

and partitioning the dataset. Subsequently, the BPNN model was enhanced by 

replacing the Ordinary Least Square (OLS) cost function with the Least Median 

Square (LMedS). 

In Phase 3, the simulated and real datasets were used in experimentations. Then, the 

comparison of the model’s performance for both BPNN model and enhanced BPNN 

models using error measures is performed.  

In the last phase, before starting to do the prediction, the model validation was used 

the time series moving block bootstrap (MBB). Last but not least, the stock market 

predicted for multi-step ahead using the validated model. 
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Figure 3.1 shows the flowchart of research activities that were conducted in every 

phase. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.1. Research Flowchart 
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3.2.1 Data Collection 

Yahoo Finance served as the primary data source for this research. Secondary data 

was utilized, as the Yahoo Finance website contained 1,222 daily closing price data 

points, as suggested by Vijh et al. (2020), covering the period from January 2, 2018, 

to December 30, 2022, for stock market prediction. Primary data collection was 

deemed unnecessary, as the Yahoo Finance dataset met the research requirements and 

provided a sufficiently large dataset for forecasting. The data was analyzed using both 

the BPNN model and enhanced BPNN model, which were developed in Spyder 

software by executing Python code. 

3.2.2 Descriptive Analysis 

Descriptive statistics are essential in stock market prediction as they help to 

summarize and understand the data. Here are some key descriptive statistics that can 

be used: 

1. Mean Price: The mean provides the average value of stock prices over a 

specific period. It helps in understanding the central tendency of the data. 

2. Median Price: The median is the middle value of the stock prices when 

arranged in ascending to descending order. It is useful for understanding the 

central tendency, especially when the data has outliers. 
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3. Standard deviation: This measures the dispersion or variability of stock 

prices from the mean. A higher standard deviation indicates more volatility in 

the stock prices. 

4. Variance: Variance is the square of the standard deviation and provides a 

measure of the spread of stock prices around the mean. 

5. Minimum and Maximum Price: These values indicate the lowest and highest 

stock prices within a specific period, providing insights into the range of price 

fluctuations. 

6. Skewness and Kurtosis:  

Skewness can help the neural network understand the asymmetry in the 

distribution of stock prices, which can be important for capturing market 

anomalies. 

Kurtosis provides information about the “tailedness” of the distribution, 

helping the neural network understand the probability of extreme price 

movements. 

7. Simple Moving Average (SMA):  

Moving averages can be used as features to smooth out short-term fluctuations 

and highlight longer-term trends. They are commonly used in technical 

analysis and can be valuable inputs for neural networks. SMA_50 (50-Day 
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Simple Moving Average) represents the average closing price over the past 50 

days. It reflects short-term trends in the stock price. SMA_200 (200-Day 

Simple Moving Average) represents the average closing price over the past 

200 days. It reflects long-term trends in the stock price. 

The stock price was considered as upward trend when: 

i) SMA_50 is above SMA_200: If the 50-day SMA crosses above the 

200-day SMA, it is generally considered a bullish signal, indicating an 

upward trend. This is known as a "Golden Cross." Golden Cross 

indicates potential upward momentum and is often seen as a buy 

signal. 

ii) When Both SMAs are Rising: If both the 50-day and 200-day SMAs 

are rising, it suggests a strong upward trend. 

The stock price was considered as downward trend when: 

i) When SMA_50 is Below SMA_200: If the 50-day SMA crosses below 

the 200-day SMA, it is generally considered a bearish signal, 

indicating a downward trend. This is known as a "Death Cross." Death 

Cross indicates potential downward momentum and is often seen as a 

sell signal. 
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ii) When Both SMAs are Falling: If both the 50-day and 200-day SMAs 

are falling, it suggests a strong downward trend. 

There are a few common cases and ways to interpret it as follow:  

i) If the 50-day SMA is steadily rising and is above the 200-day SMA: 

This indicates a sustained upward trend. 

ii) If the 50-day SMA crosses above the 200-day SMA (Golden Cross): 

This signals a potential bullish trend and may be a good time to 

consider buying. 

iii) If the 50-day SMA is below the 200-day SMA and both are declining: 

This suggests a sustained downward trend. 

iv) If the 50-day SMA crosses below the 200-day SMA (Death Cross): 

This signals a potential bearish trend and may be a good time to 

consider selling. 

Figure 3.2 illustrated the example of Death Cross and Golden Cross to be 

clearer how the crosses could be identified. 

 

 



 

 

 

 

 

39 

 

 

 

Figure 3.2. Illustration of Death Cross and Golden Cross in Stock Market Trends 

Note: Adapted from Simmons (2018) 

 

8. Return Analysis: Returns over different periods can be used as features to 

represent the performance of stocks. This helps the neural network understand 

the profitability and growth trends. 

9. Frequency Distribution: Creating features based on the frequency distribution 

of stock prices can help the neural network understand the overall distribution 

and patterns in the data.  
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By incorporating these descriptive statistics as features, neural networks can gain a 

more comprehensive understanding of the stock market data, leading to better 

predictions and analysis. 

3.2.3 Boxplot of outlier detection 

In this section, an assessment was conducted to determine whether the data exhibited 

an outlier problem. The problem of outliers was detected in stock market prediction. 

The boxplot method, as suggested by McGrill et al., (1978) was employed to identify 

and examine any potential outliers in daily closing prices of FBM KLCI stock market. 

Selected order statistics form the basis of the boxplot approach, which is used to 

locate outlaying observations. In particular, the technique is based on determining the 

data set's sample quartiles, or hinges, and then building outlier fences (a lower fence 

and an upper fence). Outliers may occur in the data set if any observations fall outside 

(in either direction) of the built fences. The lower and upper fence can be seen in 

Figure 3.3. 
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Figure 3.3 Example of Box-plot 

Note: Adapted from Chinaza (2023) 

3.3 Preprocessing 

Data preprocessing is required in neural network analysis. This process involves data 

normalization and data partitioning. 
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3.3.1 Data Normalization 

Data normalization is important in order to scale the observed values for better neural 

network learning. Data normalization can reduce the amount of time needed for 

training by ensuring that each feature is trained on the same scale (Nayak et al., 2014). 

There are a lot of methods to do the normalization data such as min-max 

normalization median and median absolute deviation, sigmoid normalization, decimal 

scaling normalization, z-score normalization, and median normalization. Min-max 

normalization was implemented, where the data inputs were mapped into a predefined 

range [-1;1]. This technique normalizes the value of the attribute A of a data set 

according to its minimum and maximum values. It converts a value a of the attribute 

A to 𝑎̂ in the range [low; high] (Zhang et al., 2021) by computing: 

â = low +
(high−low)∗(a−min A)

max A−min A
                                           (3.1) 

All out-of-sample values below min A and above max A were mapped to low and 

high respectively, after considering the minimum, min A, and maximum, max A, 

values reported in the sample data set. 

3.3.2 Data Partitioning 

Based on the research by Sharma et al., (2021), in order to get 100% specificity and 

sensibility in neural network, data partitioning is divided into two parts which are 

85% training set and 15% testing set. Neural network training sufficient if the real 

data involves a large sample size like more than thousands or hundreds (Wei et al., 
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2015). This research split the data into training and testing sets using the ‘iloc’ 

method by selecting rows based on their index position.   

In the context of Python's pandas library, ‘iloc’ stood for "integer location" and was a 

method used for accessing and retrieving data from DataFrame objects using integer-

based indexing. The iloc method allowed for the selection of specific rows and 

columns from a DataFrame by providing integer indices, enabling data retrieval based 

on position rather than label. 

The method takes two arguments: the starting index and the ending index of the rows 

to be selected. The training set consisted of the rows that fell between the starting and 

finishing indexes; the testing set consisted of the remaining rows. The size of the 

dataset depends on the percentage of the partitioning.  

The two variations of simulated datasets, designated as Data Set I and Data Set II, to 

evaluate the model’s performance. The input nodes number was the most fundamental 

parameter, as it corresponded to the number of lagged observations used to portray the 

time management of underlying pattern (Zhang, 2001). The parameters varied across 

levels of 5, 10, 15, 20, 25, 30, 35 and 40 input lags for enhanced BPNN modelling.  

For Data Set I and II showed in Table 3.1, all possible combinations of hidden nodes 

and input lags were investigated with varying proportions of outliers ranging from 

0%, to 65% which extend previously published experiments with such datasets (Ghani 
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et al., 2018). The simulated data, which included Data Set I and II, were required to 

evaluate the effectiveness of the model. 

Table 3.1 

Input Lags Outliers Percentage for Enhanced BPNN model on Datasets 

No. Data Description Notations Outliers Input 
Lags 

Hidden 
Nodes 

1 Real Datasets   FBM KLCI Stock 
Market Closing Prices 

62% 

5, 

10, 

15, 

20, 

25, 

30, 

35 
40 

5, 

10, 

15, 

20, 

25, 

30, 

35, 
40, 

45                                                                                                                                                                                                                                                                                                                 

2  Simulated  
1-Dimensional Data 

Data Set I 

 

 

0% 

5% 

10%, 

15%, 

20%, 

25%, 

30%, 

35%, 

40%, 

45%, 

50%, 

55%, 

60% 

65% 

3 Simulated  
1-Dimensional Data 

Data Set II 
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Data Set I: To evaluate the algorithm developed for application on FBM KLCI stock 

market data, was employed as an approximation task. The function defined in 

Equation 3.2 was used to assess several robust algorithms.  

A lot of previous studies have applied this function (Liano, 1996; Chen & Jain, 1994; 

Chuang, 2020; El-Melegy et al., 2009; Rusiecki, 2005). The independent, x and 

dependent variable,  y were used to generate the simulated data (Chuang, 2020). The 

equation 3.2 defines this function: 

𝑦 = |𝑥|−2 3⁄                                                       (3.2) 

where, 

x = independent variable, 

y = dependent variable. 

The independent variable, x can generate the data points with a step 0.01 and in the 

range [-2, 2], and then the dependent variable, y can be determined by Equation 3.2. 

Data Set II: The second 1-D function to be approximated was a function considered 

in many articles (Chen & Jain, 1994; Chuang et al., 2004) defined as: 

𝑦 =
sin(𝑥)

𝑥
                                                      (3.3) 

where, 

x = independent variable, 

y = dependent variable. 
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With a 0.1 step, the independent variable was sampled within the interval [-7.5, 7.5].  

For clearer, Table 3.2 was presented the simulated dataset for this research study. 

Table 3.2 

Function for Simulated Dataset 

No. Data Type Notation Function 

1 Simulated 1 - Dimensional Data Data Set I 𝑦 = |𝑥|−2 3⁄  

2 Simulated 1 - Dimensional Data Data Set II 
𝑦 =

𝑠𝑖𝑛(𝑥)

𝑥
 

 

Figure 3.4 shows the connectionist feedforward backpropagation of DPSG-LMedS 

model. 

 

Figure 3.4. Connectionist Feedforward Backpropagation of DPSG-LMedS model 

Here 𝑦𝑡−1, … , 𝑦𝑡−𝑝  are input values (daily FBM KLCI closing prices data) for 

𝑝𝑡ℎ lag. and  𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑝  are forecast errors for 𝑞𝑡ℎ  lag and 𝑦𝑡+1  is forecast 
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values of FBM KLCI indices as 𝑖𝑡ℎ-step-ahead, 𝑖 = 1,2, … , 𝑚,. Table 3.3 exhibits the 

variables of input lags. 

Table 3.3 

Variables of input lags 

Time (t) 𝒚
𝒕
 Input Lag 1 Input Lag 2 Input Lag 3 … Input Lag p 

1 𝑦
1
 - - - - - 

2 𝑦
2
 𝑦

1
 - - - - 

3 𝑦
3
 𝑦

2
 𝑦

1
 - - - 

4 𝑦
4
 𝑦

3
 𝑦

2
 𝑦

1
 - - 

⋮ ⋮ 𝑦
4
 𝑦

3
 𝑦

2
 - - 

𝑦5 𝑦
4
 𝑦

3
 - - 

𝑦
6
 𝑦

5
 𝑦

4
 ⋮ 𝑦

𝑝
 

𝑦
𝑡−1

 ⋮ ⋮ ⋮ - ⋮ 

T 𝑦
𝑡
 𝑦

𝑡−1
 𝑦

𝑡−2
 𝑦

𝑡−3
 ⋯ 𝑦

𝑡−𝑝
 

Following the data partitioning process, the original FBM KLCI stock market dataset 

was systematically divided into two distinct subsets: training and testing. The training 

set, comprising 85% of the total sample size, was designed to facilitate the model’s 

learning of underlying trends and patterns in stock price movements. The remaining 

15% was designated as the testing set, ensuring an evaluation of predictive accuracy 

and model generalization. Table 3.4 presents the partitioning tabulation for FBM 

KLCI data.  
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Table 3.4 

Partitioning Tabulation for FBM KLCI Data 

Series Part ANN Data 
Partitioning 

Terms 

Time 
(t) 

Actual 
values at 

time, t 

Fitted 
Values 

Forecasted 
Values 

Model Estimation 
Part 

Training Set 
(85%) 

1 𝑦
1(𝑡𝑟𝑎𝑖𝑛)

 𝑦̂1(𝑡𝑟𝑎𝑖𝑛) - 

2 𝑦
2(𝑡𝑟𝑎𝑖𝑛)

 𝑦̂2(𝑡𝑟𝑎𝑖𝑛) - 

3 𝑦
3(𝑡𝑟𝑎𝑖𝑛)

 𝑦̂3(𝑡𝑟𝑎𝑖𝑛) - 

⋮ ⋮ ⋮ - 

𝑦
(𝑡𝑟𝑎𝑖𝑛)

 𝑦
𝑡(𝑡𝑟𝑎𝑖𝑛)

 𝑦̂𝑡(𝑡𝑟𝑎𝑖𝑛) - 

Model Evaluation 
Part 

Testing Set 
(15%) 

𝑡 + 1 𝑦
𝑡+1

 - 𝑦̂1(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) 

𝑡 + 2 𝑦
𝑡+2

 - 𝑦̂2(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) 

⋮ ⋮ - ⋮ 

- 

𝑡 + 𝑛 𝑦
𝑡+𝑛

 - 𝑦̂𝑛(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) 

3.4 Backpropagation Neural Network Modelling 

Backpropagation Neural Network (BPNN)s have gained significant attention in 

various domains, including stock market prediction, due to their ability to learn 

complex nonlinear relationships from data (Vargas et al., 2022). The basic structure of 

a BPNN consists of an input layer, one or more hidden layers, and an output layer 

(Pellegrino et al., 2022).  

The backpropagation algorithm uses gradient descent to update the weights and biases 

of the network, aiming to minimize the mean squared error between the predicted and 
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actual outputs (Zhang et al., 2024). Data splitting, data preprocessing, design and 

architecture, training algorithm, and time lags are also important in BPNN model. The 

following section has discussed further regarding input layer, hidden layers, and an 

output layer, data splitting, data preprocessing, design and architecture, training 

algorithm, and time lags. 

3.4.1 Input Layer 

Input layer in backpropagation neural network (BPNN) is the layer where data is 

introduced into the system (Priddy, 2007). In the context of backpropagation, which is 

a supervised learning algorithm for training neural networks, the input layer's primary 

function is to transmit the input features to the subsequent layers in the network. This 

process enables the network to learn and make predictions based on the input data 

effectively. 

3.4.2 Output Layer 

The output layer in a BPNN consists of a hidden layer with 8 neurons and is used to 

minimize error between target and output (Primadusi et al., 2016). In BPNN model, 

the output layer is the layer with adjustable hidden-to-output weights. 

3.4.3 Hidden Nodes 

The hidden layer in neural networks is an unobservable layer of nodes that calculate 

the weighted sum of their input nodes and pass the sum, adjusted for a bias, to the 

next node in the network (Averitt & Natarajan, 2018). Hidden nodes in neural 
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networks are randomly generated additive or radial basis function nodes that can work 

as universal approximators in incremental extreme learning machines (Huang et al., 

2006). In the research by Uzair and Jamil, in 2020, the different number of layers has 

been tested in order to get the most accurate results. 

Figure 3.5 illustrates the architecture and computational flow of the neural network 

model. The diagram consists of three key layers: the input layer, the hidden layer, and 

the output layer. The input layer receives multiple features represent past data points 

fed into the network. These inputs are transmitted through weighted connections to 

the hidden layer, where neurons process and transform the information using 

activation functions. The output layer then generates predictions correspond to future 

values based on the model’s learned patterns. The connections between layers signify 

the propagation of information, demonstrating how the neural network refines input 

data to produce accurate forecasts. 

 

Figure 3.5 Process of Neural Network Model 



 

 

 

 

 

51 

 

3.4.4 Data Preprocessing 

Data preprocessing is also one of the steps that is essential in stock market prediction. 

It involves cleaning, transforming, and preparing the data to make it suitable for 

analysis. In preprocessing data, normalization and feature selection are also involves 

in order to improve the accuracy of stock market prediction using neural network 

(Ican & Celik, 2017).  

3.4.5 Data Splitting 

The process of splitting the data is a crucial step in stock market prediction by using 

any machine learning model. The data splitting involves dividing the available data 

into training, and testing sets. The training set is used to train the model and the 

testing set is used to evaluate the model's performance on unseen data.  

The research by Shen and Shafiq in 2020, used the splitting of the data into the 

training and testing set. The result shows that the system achieves overall high 

accuracy for stock market prediction by conducting comprehensive evaluations on 

frequently used machine learning models. The previous study also discusses the 

importance of splitting the data to train, find the model selection and estimate model 

prediction error or accuracy (Kumbure et al., 2022). 
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3.4.6 Design and Architecture 

The design and architecture for each type of neural network model is different. 

Therefore, before the neural network model has been used for analysis, the design of 

the neural network model is really needed.  

3.4.7 Training Algorithm 

Backpropagation is a widely used training algorithm for neural networks. In the 

context of stock market prediction, researchers have applied traditional 

backpropagation to train neural networks to learn patterns and trends in historical 

stock data. 

3.4.8 Time Lags 

Time lags in neural networks were significant, particularly when processing time-

series data or sequences. Utilizing time series with input vector lags improved the 

accuracy of forecasting stock market indices (Surakhi et al., 2021). Hadi (2006) 

proposed a methodology for reducing data requirements in hydrological time series 

forecasting by employing Box-Jenkins models to identify “lag components” and 

developing a compact network structure. 

According to Kamaruddin et al. (2019), the study utilized time lags of 5, 10, 15, 20, 

25, 30, 35, and 40. The findings indicated that the optimal configuration for the Killer 

Whale-Backpropagation (KW-BP) Algorithm was 30-30-30 for input lags, error lags, 

and hidden nodes, respectively. 
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One previous study by Hsieh et al. (2011) applied a BPNN to predict future stock 

prices using various input nodes and found that the number of nodes in the hidden 

layer affected the model's convergence efficiency and prediction accuracy. The study 

also determined that the optimal configuration for the hidden layer was achieved 

when the number of nodes was twice that of the input nodes. Similarly, Utomo et al. 

(2017) found that the number of input nodes, the number of hidden layer neurons, and 

the number of training iterations were significant factors affecting forecast accuracy. 

3.5 Backpropagation Neural Network (BPNN) for Stock Market Prediction 

In stock market prediction, BPNNs can handle large-scale data tasks and identify the 

patterns that are often present in financial data. This ability makes BPNNs a powerful 

tool for predicting future stock prices and market trends. To better understand how 

BPNNs operate, consider the flowchart depicted in Figure 3.6. This figure illustrates 

the steps involved in implementing the original BPNN model. It shows the process of 

data collection, preprocessing, model determination, training, and validation. 
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Figure 3.6. Backpropagation Neural Network 

The multilayer perceptron was the main concern. 

Step 1: Time Series Input Data  

𝑦𝑡 = 𝑥𝑡−1, 𝑥𝑡−2, ⋯ , 𝑥𝑡−𝑝                                       (3.4) 

where, 

yt = input values (daily closing stock market data), 

xt-1,…,xt-p = pth lag input values (daily closing stock market data), 

t-p = lags for inputs, 
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Step 2: Initialization of random weight from input layer to hidden layer. 

Γ𝛼,𝛽
𝑖𝑛𝑝𝑢𝑡→ℎ𝑖𝑑𝑑𝑒𝑛 = ±

1

2𝑛
∑

1

|𝑥𝑡|
𝑛
𝛼=1                                        (3.5) 

where 

𝛼 = row connecting hidden nodes with input nodes, 

β = column connecting hidden nodes with input nodes, 

n = total number of inputs, 

yt = inputs of network, 

Γ = vector of weight. 

Step 3: Approximate 𝑦̂𝑡+𝛼 

The formula for autoregressive (AR) model is 

𝑦𝑡+𝛼 = 𝑓(𝑦𝑡−1, … , 𝑦𝑡−𝑝) + 𝜀𝑡,                                       (3.6) 

becoming 

𝑦𝑡+𝛼 = 𝑓(𝑦𝑡) + 𝜀𝑡,                                       (3.7) 

where 

yt = actual values (daily closing data of the stock market) at time t, 

yt+i = stock market data predict values at ith-step-ahead, i= 0,1,2,…m, 

xt-1,…,xt-p = pth lag input values (daily closing stock market data), 

𝜀𝑡= the errors of the model at time t, 

t = time, 

f(.) = function of nonlinear. 

The expression in equation 3.7 is the approximation of nonlinear to  f : 

𝑦̂𝑡+𝛼 = 𝑓(𝑦𝑡),                                                       (3.8) 
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where 

𝑦̂𝑡+𝛼 = the approximated of forecast values at ith-step-ahead, i= 0, 1, 2, …, m, 

f (.) = the evaluated of nonlinear function at yt 

yt = real values (daily closing stock market data) at time t, 

Step 4: Approximate the output for the first layer. The approximation of the nonlinear 

to f is the feedforward network given by 

𝑦𝑗 = 𝑓1(𝑦𝑡−1, … , 𝑦𝑡−𝑝) 

∴ 𝑦𝑗 = 𝑓1(∑ 𝑤𝛼𝑗𝑦𝑡
𝑙
𝛼=1 ),                                               (3.9) 

where 

Γiβ = An input layer to hidden layer connection's random weight matrix ranges from -

1 to 1,  

𝑓1 = tangent sigmoidal function.  

Therefore, nonlinear mapping from pass data to projections of future data is 

represented by the feedforward network. Consider the weight matrix of a link between 

the output and hidden layers as comparable 𝑤𝛽𝑘. Figure 3.7 exhibits the link between 

output layer and output. 



 

 

 

 

 

57 

 

 

Figure 3.7. Information Flow in the Forward Path of a Two-Layer Neural Network 

Step 5: Define the first synapse which is input to hidden layer activation function, 

𝑓(. ).  

𝒇𝟏(. ) =
𝐬𝐢𝐧𝐡 (. )

𝐜𝐨𝐬𝐡 (. )
=

𝒆𝒙𝒑(.) − 𝒆𝒙𝒑−(.)

𝒆𝒙𝒑(.) + 𝒆𝒙𝒑−(.)
  

= 2 (
1

1 + 𝑒𝑥𝑝−2(.)
) − 1 (3.10) 

                                                                     

where ftanh: ℜ→[-1;1] 

Becoming 

1
tanh( )l

j j ty w y=
=    

                   = 2 (
1

1+𝑒𝑥𝑝
−2(∑ 𝑤𝛼𝑗𝑦𝑡

𝑙
𝛼=1 )

) − 1 (3.11) 
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Step 6: Initialization of random weights from hidden to output layer 

           𝒘𝒋.𝒌
𝒉𝑰𝒅𝒅𝒆𝒏→𝒐𝒖𝒕𝒑𝒖𝒕

= ±
𝟏

𝟐𝒏
∑

𝟏

𝒇(∑ 𝒘𝜶.𝒋
𝜶𝒏𝒑𝒖𝒕→𝒉𝜶𝒅𝒅𝒆𝒏

𝒚𝒋)

𝒏
𝒋=𝟏  (3.12) 

 

where, 

k = column connecting hidden nodes with input nodes  

β = column connecting hidden nodes with input nodes  

n = the total number of inputs 

yβ= the inputs of network 

w = the vector weight 

f(.) = function of repetitive /linear activation (equal to 1) 

 

Step 7: Find the second synapse's activation function, f(.), which connects the hidden 

layer to the output layer. 

f2(.) = 1(.),                                                      (3.13) 

where fpurelin: ℜ→[-1;1] 

becoming 

𝑦𝑘 = 1(∑ 𝑤𝑗𝑘
𝑚
𝑗−1 𝑦𝑗)                                           (3.14) 

  = 1(𝑥𝑘)              

= 𝑥𝑘                

= ∑ 𝑤𝑗𝑘

𝑚

𝑗−1

𝑦𝑗  
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Step 8: The output neurons' maximum likelihood estimator, or accumulated error 

signal, is calculated by Equation 3.16 after pattern t presentation.  

𝜀𝑡 =
1

2
∑ [𝑦𝑡 − 𝑦𝑘]2𝑛

𝑘=1                                           (3.15) 

where 

𝜀𝑡 = errors at time t, 

yi = actual output 

yk = target output.  

Step 9: The primary objective is to minimize εavg by adjusting the free parameters wβk 

and wiβ. Equation 3.16’s partial derivatives were computed in relation to the weights, 

wβk. 

So, for the method illustration, let 

𝑦𝑡 − 𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘
𝑑                                              (3.16) 

Therefore 

 𝜕𝜀𝑡

𝜕𝑤𝑗𝑘
=

1

𝑇
∑ (𝑦𝑘 − 𝑦𝑘

𝑑)
𝜕𝑦𝑘

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑤𝑗𝑘

𝑇
𝑡=1                                        (3.17) 

=
1

𝑇
∑(𝑦𝑘 − 𝑦𝑘

𝑑)𝑓′(𝑥𝑘)𝑦𝑗

𝑇

𝑡=1

 

The whole goal is to reduce εt by modifying the free parameters wβk and wiβ. 

Step 10: Calculating the partial derivatives of Equation 3.14 with regard to the 

weights wβk. is necessary to reach the goal. Thus, 

𝜕𝜀𝑡

𝜕𝑤𝑗𝑘
=

1

𝑇
∑ (𝑦𝑘 − 𝑦𝑘

𝑑)
𝜕𝑦𝑘

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑤𝑗𝑘

𝑇
𝑡=1         

=
1

𝑇
∑ (𝑦𝑘 − 𝑦𝑘

𝑑)𝑓′(𝑥𝑘)𝑦𝑗
𝑇
𝑡=1                                  (3.18) 
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The chain-rule was utilized to calculate the partial derivatives in Equation 3.18. Let 

𝛿𝑘 = (𝑦𝑘 − 𝑦𝑘
𝑑)𝑓′(𝑥𝑘)                                         (3.19) 

According to the chain-rule, if 

𝑦 = 𝑓(𝑔(𝑥)) then 𝑑𝑦

𝑑𝑔

𝑑𝑔

𝑑𝑥
                                        (3.20)  

As a result, changing k δk in Equation 3.19 results in 

  𝜕𝜀𝑡

𝜕𝑤𝑗𝑘
=

1

𝑇
∑ 𝜕𝑘𝑦𝑗

𝑇
𝑡=1                                                (3.21) 

Partial derivatives of β existed because the network was considered to be totally 

connected to a set of k. The cumulative gradient of the network's second level 

consisted of these derivatives (Equation 3.21), following the flow in Figure 3.8. 

 
Figure 3.8. Information Flow in the Backward Path of a Two-Layer Neural Network 
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Step 11: The partial derivatives of Equation 3.14 with respect to wiβ are determined in 

a similar manner (the network in the first level). The chain-rule is applied twice to  

  𝜕𝜀𝑡

𝜕𝑤𝛼𝑗
=

1

𝑇
∑ ∑ (𝑦𝑘 − 𝑦𝑘

𝑑)
𝜕𝑦𝑘

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑤𝛼𝑗

𝑛
𝑘=1

𝑇
𝑡=1                               1 

=
1

𝑇
∑ ∑ (𝑦𝑘 − 𝑦𝑘

𝑑)𝑓′(𝑥𝑘)𝑤𝑗𝑘𝑓′(𝑥𝑗)𝑦𝛼
𝑛
𝑘=1

𝑇
𝑡=1 .                (3.22) 

The Equation 3.22 is simplified by substituting the auxiliary term 𝜕𝑘 which produces 

𝜕𝜀𝑡

𝜕𝑤𝛼𝑗
=

1

𝑇
∑ [∑ 𝜕𝑘𝑤𝑗𝑘

𝑛
𝑘=1 𝑓′(𝑥𝑗)]𝑦𝛼

𝑇
𝑡=1 .                              (3.23) 

The Equation 3.23 is simplified by substituting an additional auxiliary term, where 

𝛿𝑗 = ∑ 𝜕𝑘𝑤𝑗𝑘
𝑛
𝑘=1 𝑓′(𝑥𝑗)                                         (3.24) 

becoming Equation 3.25. This is the first network level in cumulative gradient. 

𝜕𝜀𝑡

𝜕𝑤𝛼𝑗
=

1

𝑇
∑ 𝛿𝑗𝑦𝛼

𝑇
𝑡=1                                              (3.25) 

Let's consider a single training pattern to describe the backpropagation algorithm. The 

outputs iy  and y  are computed on the forward path as shown in Figure 3.6. The 

level one and level two partial derivatives are represented on the backward route by 

the products k y  and iy  respectively. In other words, the auxiliary terms   and 

k  [Equations 3.24 and 3.25] implicitly carry error information throughout the 

network.  

 

Step 12: Based on the stopping criteria, steps 1 through 13 should be repeated until 

the training stops. 
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Step 13: Take the NAR model's residuals and add them as additional inputs to the 

network. 

 

Step 14: Estimated 𝑦̂𝑡+𝛼 

𝒚𝒕+𝜶 = 𝒇(𝒚𝒕−𝟏, … , 𝒚𝒕−𝒑, 𝜺𝒕−𝟏, … , 𝜺𝒕−𝒒) + 𝜺𝒕+𝜶      (3.26) 

𝑦̂𝑡+𝛼 = 𝑓(𝑦̂𝑡−1, … , 𝑦̂𝑡−𝑝, 𝜀𝑡̂−1, … , 𝜀𝑡̂−𝑞)         (3.27) 

𝑦̂𝑡+𝛼 = 𝑦𝑡+𝛼 = 𝑓(𝑦𝑡 + 𝜀𝑡) + 𝜀𝑡+𝛼    (3.28) 

𝑦̂𝑡+𝛼 = 𝑦̂𝑡+𝛼 = 𝑓(𝑦̂𝑡 + 𝜀𝑡̂)            (3.29) 

 

where 

yt = actual values (daily returns stock market data) at time t, 

𝑦𝑡−1, … , 𝑦𝑡−𝑝 = pth lag input values (daily returns stock market data), 

𝑦̂𝑡+𝛼 = estimated values in forecast at ith-step-ahead, i= 0, 1, 2,…m, 

𝑦𝑡+𝛼 = stock market data predict values at ith-step-ahead, i= 0, 1, 2,…m, 

f(.) = the function of nonlinear, 

𝜀𝑡 = the errors values of forecast at time t, 

𝜀𝑡̂+𝛼 = estimated errors of the model at ith-step-ahead, i = 0, 1, 2, …, m. 

Step 15: Same as Step 12. 

A normal distribution with a mean of zero is represented as ( )2~  0,t N   where σ2 

denotes the variance. The error terms t  were regarded as independent and identically 

distributed random variables (iid.). The homoscedasticity assumption or that the error 

term variance, 𝜎𝜀
2, is constant across the time, is made. Additionally, in each instance 
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where ( )1 0t tE   − = , the error terms are uncorrelated, i.e., meaning that there is no 

covariance between them. Since there is no correlation between the independent 

variables and the error terms, ( )0t jtE x =  is the covariance. Finally, the error terms 

comply with the normality assumption. 

3.5.1 Least Median Squares (LMedS) 

In this phase, Mean Square Error (MSE) was replaced with LMedS. The process 

continued from Step 15 in Phase 1, followed by the subsequent step. 

Step 16: Start with a minimal value of 𝑚𝑒𝑑(𝜀𝑡̂
2) = 0 

Step 17: Identify the predicted output value, yk 

𝜀1̂𝑡 =
1

2
∑ [𝑦𝛼 − 𝑦𝑘]𝑛

𝑘=1
2                                              (3.30) 

where, 𝜀1̂𝑡 is the expected errors at time t, while 𝑦𝑘 and 𝑦𝑡 denoted as predicted and 

actual output respectively. 

3.5.2 Date Palm Seed Growth Algorithm (DPSG) 

DPSG is the metaheuristic algorithm where it is inspired by the growth of date palm 

seed. The farmers in the Middle East have their own way so that the roots of palm 

trees can be strong and survive in arid and dry soil conditions. This plant can grow in 

dry, arid, barren lands, even in lands that are often hit by terrible desert storms. The 

strength of the palm tree actually lies in the roots it possesses. That is why this tree is 

considered a resilient tree. 
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3.5.3 DPSG-LMedS 

The LMedS estimator has low efficiency and is not enough. Therefore, the DPSG 

algorithm need to hybrid with LMedS become Date Palm Seed Growth Least Median 

Square (DPSG-LMedS), which enhanced the model’s efficiency and accuracy in 

predicting the stock market. 

The DPSG-LMedS algorithm was developed in this research and is formulated based 

on the Pseudo-code presented below. 

Date Palm Seed Growth (DPSG) 

1. 

2. 

3. 

4. 

5. 

 

6. 

7. 

8. 

 

9. 

10. 

11. 

 

12. 

13. 

14. 

15. 

16. 

17. 

Initialize seed: Create a variable representing the date palm seed. 

Place seed in soil: Plant the seed in a pot or soil, ensuring it's adequately buried. 

Initialize stone: Create a variable representing the stone or weight. 

Place stone on top: Position the stone on the soil surface above the planted seed. 

Set water and sunlight conditions: Ensure the pot or soil receives appropriate 

water and sunlight. 

While seed is not a tree: 

     If seed receives adequate water and sunlight: 

          Allow time for growth: Let the seed absorb water and sunlight for a  

          certain duration. 

          Monitor growth conditions: Check if the seed is sprouting or growing. 

     Else: 

          Adjust water and sunlight: Provide more water and sunlight for optimal  

          growth. 

     End If 

     If the seed's roots are strong enough to lift the stone: 

          Remove the stone: Automatically lift the stone from the soil. 

     End If 

End While 

Date palm tree is fully grown. 
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Step 18: Find the median of estimated errors at time t, DPSG-LMedS into BPNN 

model 

𝜀𝑚𝑒𝑑 = 𝑚𝑒𝑑(𝜀1̂𝑡) =
1

2
∑ [𝑦𝛼 − 𝑦𝑘]𝑛

𝑘=1
2                               (3.31) 

where, 

 𝜀1̂𝑡 = the expected errors at time t, 

𝑦𝑘 = predicted output, 

𝑦𝑡 = actual output. 

 

Step 19: Minimize 𝜀𝑚𝑒𝑑  by iterative training until criterion function 𝜀𝑚𝑒𝑑  is below 

minimal value in Step 18. 

 

Step 20: If 𝑚𝑒𝑑(𝜀1̂𝑡) <  𝑚𝑒𝑑(𝜀𝑡̂), replace 𝑚𝑒𝑑(𝜀𝑡̂) with 𝑚𝑒𝑑(𝜀1̂𝑡) 

 

Step 21: Stop training once the stopping criterion is achieved. Keep the current best 

value of 𝑚𝑒𝑑(𝜀𝑡̂) 

 

Step 22: Remove outliers from the current dataset using the best criterion function 

value 𝜀𝑚𝑒𝑑 = 𝑚𝑒𝑑(𝜀𝑡̂)  and current robust standard deviation (RSD). After initial 

training, RSD is calculated 

𝜎𝑟 =  ∗ (1 +
5

(𝑁−𝑝)
) √𝜀𝑚𝑒𝑑                                              (3.32) 

where, 

𝜀𝑚𝑒𝑑 = the best achieved LMedS error value, 

N = training set size, 
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p = the input vector dimension, 

1 +
5

(𝑁−𝑝)
 = factor to compensate the effect of small sample size. 

 = the constant to provide better efficiency for the clean data with Gaussian noise. 

 

Step 23: Retrain the network on the reduced data without outliers, minimizing 𝜀𝑚𝑒𝑑. 

Remove from the training set all patterns associated with residuals exceeding a 

threshold based on the RSD 

𝜀𝛼
2  ≥ 2.5 ∗ 𝜎𝜏                                              (3.33) 

 

Step 24: Stop the network if the network LMedS performance achieved any of the 

stopping criteria. Otherwise go to Step 21. After the network stops, the best LMedS 

error value, 𝜀∗
𝑚𝑒𝑑 can be achieved (Mahsereci et al., 2017) 

3.5.4 Enhanced BPNN model using DPSG-LMedS 

The BPNN model exhibited issues with its estimators, as its cost function was not 

entirely robust. Consequently, to address this limitation, the model was enhanced by 

minimizing error using the DPSG algorithm and replacing OLS with LMedS.  

The process of the enhanced algorithm begins with the initialization of the E*D roots 

population and relevant parameters, followed by setting the generation number K=1. 

The algorithm then evaluates Fi for all individuals and categorizes them into the main-

roots and lateral-roots groups based on sorted Fi values. 
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Subsequent operations include main-roots regrowth, nutrient adjustment, and main-

roots branching, defined by  iE E n= + . Lateral-roots undergo similar regrowth and 

nutrient adjustments, followed by dead-root elimination. Further optimization steps 

involve non-dominated sorting, farthest candidate selection, and recording the best 

solution. The stop criterion is verified, and if unmet, the generation number 

increments by 1K K= + , continuing the process until convergence. Figure 3.9 

presents a flowchart detailing the steps of an enhanced algorithm aimed at improving 

the BPNN model. 

 

Figure 3.9. Contribution of the enhanced algorithm 
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Figure 3.10 provides a clearer depiction of the enhanced BPNN model, highlighting 

the contribution of the enhanced algorithm in the MSE calculation process within the 

model.  

 

 

Figure 3.10. Enhanced Backpropagation Neural Network 
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3.6 Evaluation of Prediction Model using Error Measure 

The models were evaluated by using two types of error measure which are Root Mean 

Square Error (RMSE) and Geometric Root Mean Square Error (GRMSE). The details 

of the function and formula for both error measures were explained in the next 

section. 

3.6.1 Root Mean Square Error 

Root Mean Square Error (RMSE) is used to explain how tightly the data is clustered 

around the line of best fit (Cinembiri et al., 2023). The error measure or the standard 

criterion also known as RMSE is used by mean experts that frequently used to 

compare to the model's anticipated performance and to assess a model's applicability 

to a particular set of data (Kantz & Schreiber, 2004). The RMSE can be calculated by 

using equation 3.34. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑡 − 𝑌̂𝑡)

2𝑛
𝑡−1                                                  (3.34) 

where, 

n = the number of predictions, 

𝑌̂𝑡 = the forecasted value at interval t,  

𝑌𝑡 = the actual value at interval t.  

The model that gives the smallest value in RMSE is a fit model to forecasting. 
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3.6.2 Geometric Root Mean Square Error 

Geometric Root Mean Square Error (GRMSE) serves as a method for addressing the 

issue of outliers, which often impacts the precision of error measurements, especially 

when dealing with a notably large error term resulting from an inaccurate forecast 

(Domanski & Wieclawski, 2015; Kolassa, 2016). The GRMSE can be defined as 

follows: 

𝐺𝑅𝑀𝑆𝐸 = (∏ [𝑌𝑡 − 𝑌̂𝑡]
2𝑛

𝑡 )

1

2𝑛                                                 (3.35) 

where, 

n = the number of predictions, 

𝑌̂𝑡 = the forecasted value at interval t,  

𝑌𝑡 = the actual value at interval t.  

It is common for forecasters to utilize multiple error measures to ensure the 

consistency and accuracy of the result in evaluation. Table 3.5 presented a summary 

of the error measures that were used to assess the performance of each model and to 

select the best model. 

Table 3.5 

Error Measures to Assess the Forecasting Model Performance 

No. Error Measures Notation Formula 

1. Root Mean Square Error RMSE 
√

1

𝑛
∑(𝑌𝑡 − 𝑌̂𝑡)

2
𝑛

𝑡−1

 

2. Geometric Root Mean Square Error GRMSE 
(∏[𝑌𝑡 − 𝑌̂𝑡]

2
𝑛

𝑡

)

1
2𝑛

 

*Remark: The least error measures values are the best model 
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3.7 Convergence Test 

In this section, the research used convergence test to validate the proposed algorithm 

of DPSG-LMedS. Convergence test is a common technique to validate an algorithm 

as suggested (Mutinda & Geletu, 2025). Based on the learning curve that be analyzed, 

the value of RMSE from each lag were tested with the maximum number of epochs is 

1000. In a converging learning curve, the RMSE value decreased steadily as the 

number of epochs increased. Eventually, the RMSE stabilized, indicating that the 

model had learned the underlying patterns in the data and that further training did not 

significantly improve performance. 

Figure 3.11 illustrates an example of a convergent model. 

 

Figure 3.11. Example of Convergence Result 

Note: Adapted from Song et al. (2022) 
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3.8 Summary 

This chapter presented the methodology implemented for the study. The first phase 

encompassed preprocessing steps, including data scraping and diagnostic tests. In the 

second phase, an enhanced BPNN model was developed for FBM KLCI dataset. The 

performance of both the ordinary and enhanced models was evaluated using 

simulation data and FBM KLCI datasets. Subsequently, error measures specifically 

RMSE and GRMSE were employed to select the optimal model. The final phase 

involved validating the model and conducting forecasting on the dataset.  
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CHAPTER 4 

DATA ANALYSIS AND DISCUSSION 

4.1 Introduction 

This part explains the result from the analysis of the backpropagation neural network 

(BPNN). The chapter is divided into five sections, which respect to the four objectives 

of the study. The data background explained in Section 4.2. The first objective was to 

identify the severity of outliers’ problems of Financial Times Stock Exchange (FTSE) 

Bursa Malaysia Kuala Lumpur Composite Index (FBM KLCI) dataset identified 

based on the analysis in Section 4.3 Diagnostic Test. In Section 4.3, the test for 

outliers problem was discussed.  In order to achieve the second objective which is to 

evaluate the performance of the ordinary models on real FBM KLCI dataset which 

consist of outliers’ problems, Section 4.4 presented the numerical comparisons of 

both the BPNN model and Enhanced BPNN models, where their performance was 

evaluated on a real dataset. The third objective is to develop an enhanced BPNN for 

FBM KLCI dataset with outliers’ problems. Therefore, to fulfill the third objective, 

Section 4.5 tested the enhanced BPNN on Simulated Dataset. After the enhanced 

BPNN model was tested, forecasting on the FBM KLCI stock market dataset was 

conducted for three-step ahead in Section 4.6. Last but not least, Section 4.7 shows 

the convergence test to validate the enhanced BPNN model to answer the fourth 

objective which is to validate the enhanced BPNN using time series bootstrap 

technique. In Section 4.8, the summary of this chapter has been done.  
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4.2 Descriptive Analysis 

The data background used in this research was the FBM KLCI dataset, which was 

retrieved from Yahoo Finance. The data that was scraped using Python code in 

Spyder Software has been cleaning and proceeded to diagnostic test, performance 

comparison, forecasting and convergence test.  

Figure 4.1 illustrated the closing prices of FBM KLCI from 2nd January 2018 to 30th 

December 2022. Between 2018 and early 2020, a general decline in closing prices 

was observed. In early 2020, a sharp drop occurred, followed by a recovery and 

subsequent fluctuations until the end of the year 2022. This significant decline was 

likely attributable to major market events, such as the onset of the COVID-19 

pandemic, which resulted in substantial market volatility and losses. Following the 

sharp drop, the closing prices recovered and exhibited fluctuations, indicating that the 

market had begun to stabilize after the initial shock. 

 

Figure 4.1. FBM KLCI stock market closing prices from 2nd January 2018 to 30th 

December 2022 
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Table 4.1 presented the results of descriptive statistics, including the mean price, 

median price, standard deviation, variance, minimum price, maximum price, 

skewness, and kurtosis. The mean price indicated that the average closing price was 

1,598.29. Additionally, the median price of 1,588.08 suggested that half of the closing 

prices were below 1,588.08 and half were above this value. The stock prices typically 

deviated from the mean by 119.64636, with a higher standard deviation signifying 

greater volatility and a higher variance indicating a wider spread of stock prices. 

Furthermore, the lowest and highest closing prices within the specified period were 

1,219.72 and 1,895.18, respectively. The positive skewness of 0.36615 implied a 

slight right skew in the distribution of stock prices, suggesting a greater occurrence of 

higher prices. Lastly, the kurtosis value of 0.12583 indicated that the distribution of 

stock prices had slightly heavier tails compared to a normal distribution, signifying a 

moderate presence of extreme values. 

Table 4.1 

Descriptive Statistics for FBM KLCI data 

Descriptive Statistics Value 

Mean Price 1598.29 

Median Price  1588.08 

Standard Deviation  119.64636 

Variance 14315.25142 

Minimum Price  1219.72 
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Table 4.1 (Continued) 

Descriptive Statistics for FBM KLCI data 

Descriptive Statistics Value 

Maximum Price  1895.18 

Skewness 0.36615 

Kurtosis 0.12583 

 

 Figure 4.2 illustrate the plot graph with a line of 50-day and 200-day simple moving 

average (SMA). It shows that there is 2 Golden Cross (GC) and 2 Death Cross (DC). 

Moreover, the stock price shows the sustained downward start from 2018 until mid-

year 2020. Then, the price shows a sign of a good time to consider buying and after 

mid-year 2021 it shows a sign of a good time to consider selling until early year 2022. 

After that, it gave a sign to consider buying again until mid-year 2022 and it start 

shows the sustained downward trend until end year 2022. 

 

Figure 4.2. 50-day and 200-day Simple Moving Average 

Golden Cross 

Death Cross 
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Figure 4.3 illustrated the daily return of the FBM KLCI stock market and bands at 

±119.64636 standard deviation. Around the beginning of 2020, a notable spike was 

observed, where the daily return value sharply increased before declining 

significantly. This spike likely indicated a major market event or anomaly during that 

period, potentially related to global events such as the COVID-19 pandemic, which 

had a substantial impact on financial markets. The plot revealed periods of increased 

volatility, during which the daily returns fluctuated more widely. These periods may 

have corresponded to market turbulence, economic news, or other factors influencing 

the asset's price. The remainder of the plot displayed relatively smaller fluctuations in 

daily returns, suggesting periods of more stable market conditions.  

 

Figure 4.3. Daily return of FBM KLCI and bands at ± 119.64636 standard deviation 
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Figure 4.4 illustrates the subset splitting process applied to the FBM KLCI stock 

market closing prices. The dataset was divided into training and testing sets, with an 

allocation ratio of 85% and 15%, respectively. The training set encompasses the 

majority of historical data, ensuring that the model learns from extensive market 

fluctuations and trends. Meanwhile, the testing set provides a dedicated portion for 

evaluating predictive performance, assessing the model’s ability to generalize to 

unseen data. This structured division is crucial for improving forecasting accuracy in 

financial modeling. 

 
 

Figure 4.4. Subset splitting for FBM KLCI stock market closing prices 
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Table 4.2 presents a comprehensive breakdown of the total sample size (N) and the 

partitioning of data for training and testing across different data types. The table 

categorizes the datasets into distinct groups, specifying the number of samples 

allocated for training and testing. The training set comprises 85% of the total dataset, 

ensuring that the model learns patterns effectively, while the remaining 15% is 

designated for testing to evaluate predictive performance. 

Table 4.2 

Data Partitioning for Training and Testing Sets for FBM KLCI data 

No. Data Type Total Sample 
Size (N) 

Training 
(85%) 

Testing 
(15%) 

1 Real Dataset (FBM 
KLCI Stock Market 

Closing Prices) 

1222 1039 183 

2 Simulated 
1–Dimensional Data 

(Data Set I) 

2000 1500 300 

3 Simulated 
1–Dimensional Data 

(Data Set II) 

2000 1500 300 

 

4.3 Outliers Detection 

In order to achieve a first objective, Section 4.3 was completed, where a diagnostic 

test was analyzed to check whether the outliers problems existed in the FBM KLCI 

stock market data. 
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The outliers of FBM KLCI stock prices were identified using box plot as suggested by 

Shehadeh et al., (2022). This research was tested the outliers using Python code for 

different number of lags which is 5, 10, 20, 30, 40 and 50. Based on Figure 4.5, it is 

clearly seen that the boxplot for each lags has some outliers in the closing price data. 

All the boxplot from each lag is normal. However, based on Table 4.3, the percentage 

of outliers from lag 40 and lag 50 have more outliers compared to the first four lags. It 

shows that the outliers that up to 65% outliers exist at lag 40 and lag 50. 

 

Figure 4.5. Outliers which exist in FBM KLCI Stock Prices for different lags 
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Table 4.3 

Percentage of outliers for different lags of FBM KLCI Dataset 

No. of lags No. of Outliers Outlier (%) 

5 7000 57.33% 

10 7000 57.33% 

20 7000 57.33% 

30 7000 57.33% 

40 8010 65.52% 

50 8010 65.52% 

4.4 Performance Comparisons for three models 

To accomplish the second objective, the real FBM KLCI dataset was analyzed by 

measuring the Root Mean Square Error (RMSE) and Geometric Root Mean Square 

Error (GRMSE) with different input lags and hidden nodes using three models which 

is BPNN model, BPNN with LMedS model and Enhanced BPNN models. The 

enhanced model by run the coding as written in Appendix A.  

Referring to Appendix B, Table 4.4 was simplified and compared the three model, 

BPNN model, BPNN with LMedS model and Enhanced BPNN models using FBM 

KLCI stock market closing price dataset. The results show that the enhanced BPNN 

model produced the smallest value of RMSE and GRMSE compared to ordinary 

BPNN model. Based on the configuration from the result of RMSE and GRMSE, it 

shows that the performance of the enhanced model is the best when used with the 

higher number of input lags and the lower number of hidden nodes. 
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Table 4.4 

Comparisons of RMSE and GRMSE value for Three Different Models using FBM 

KLCI Stock Market Closing Price Dataset  

Type of 
Model 

RMSE GRMSE 

Training Testing Training Testing 

 

BPNN 
 0.633592 (40-5) 0.464590 (30-25) 1.60661 (40-5) 1.455309 (30-25) 

BPNN with 
LMedS 0.553211 (40-5) 0.461132 (15-20) 1.516604 (35-5) 1.447603 (25-20) 

Enhanced 
BPNN 0.521857 (35-5) 0.454544 (20-10) 1.477958 (35-5) 1.441731 (20-10) 

 Note: number in bracket () is the configuration number 

4.5 Enhanced Backpropagation Neural Network on Simulated Dataset 

This research enhanced the backpropagation neural network (BPNN) by replacing the 

Mean Square Error (MSE) with Least Median Square (LMedS). Moreover, the 

enhanced BPNN was further enhanced by combining the BPNN model with a 

metaheuristic algorithm which was the Date Palm Seed Growth Algorithm (DPSG) 

algorithm. Therefore, the model was renamed as DPSG-LMedS. Then, the simulation 

was done after enhancing the BPNN model.  

The evaluation on the enhanced model has compared the RMSE and GRMSE value 

from each input lag and hidden node using the Simulated Data Set I and Simulated 

Data Set II.  Based on RMSE and GRMSE value, Appendix C and E presents the 

result of the enhanced model performance that was tested on Simulated Data Set I. 

The enhanced model performance was compared with the different number of outliers 
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percentages (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60% 

and 65%), lags input and hidden nodes.  

Based on Table 4.5, the smallest value of RMSE and GRMSE were at 65% of outliers 

where the value was 0.309335 (20-10) and 1.300325 (20-5) respectively. Based on the 

performance of the enhanced model checking, the best configuration shows the 

smaller number of hidden nodes and the average number of input lags. 

Table 4.5 

The comparison of RMSE and GRMSE value in the training phase using Data Set I 

Outliers (%) RMSE GRMSE 

0 0.39221 (5-25) 1.365482 (25-5) 

5 0.373162 (5-5) 1.346845 (5-5) 

10 0.429335 (35-10) 1.416202 (35-10) 

15 0.424814 (40-10) 1.410276 (40-10) 

20 0.42305 (10-5) 1.407287 (10-5) 

25 0.338947 (20-5) 1.304435 (20-5) 

30 0.386238 (35-5) 1.354567 (25-25) 

35 0.438536 (35-10) 1.383593 (10-15) 

40 0.379449 (40-5) 1.374507 (15-5) 

45 0.375665 (10-5) 1.353026 (20-5) 

50 0.373053 (40-5) 1.376593 (5-30) 

55 0.354103 (40-5) 1.325635 (15-5) 
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Table 4.5 (continued) 

The comparison of RMSE and GRMSE value in the training phase using Data Set I 

Outliers (%) RMSE GRMSE 

60 0.365543 (10-5) 1.404695 (20-30) 

65 0.309335 (20-10) 1.300325 (20-5) 

Note: number in bracket () is the configuration number 

Meanwhile, Appendix D and F analyzed in the testing phase using Simulated Data 

Set I to obtain the RMSE and GRMSE value respectively. Table 4.6 presents the 

smallest value of RMSE and GRMSE from a different number of outliers based on the 

testing phase using Simulated Data Set I.  

However, in the testing phase, the smallest value of RMSE and GRMSE were at the 

25% of outliers where the values were 0.320704 (20-5) and 1.257188 (20-5) 

respectively.  

Table 4.6 

The comparison of RMSE and GRMSE value in the testing phase using Data Set I 

Outliers (%) RMSE GRMSE 

0 0.524275 (35-20) 1.491123 (35-35) 

5 0.35629 (5-5) 1.294195 (5-5) 

10 0.515865 (15-20) 1.489631 (15-20) 

15 0.509376 (40,10) 1.480423 (40-10) 

20 0.518792 (25-5) 1.493716 (25-5) 
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Table 4.6 (continued) 

The comparison of RMSE and GRMSE value in the testing phase using Data Set I 

Outliers (%) RMSE GRMSE 

25 0.320704 (20-5) 1.257188 (20-5) 

30 0.371707 (20-5) 1.310897 (20-5) 

35 0.529537 (25-35) 1.500245 (25-5) 

40 0.519956 (10-5) 1.474956 (25-10) 

45 0.540243 (30-5) 1.502453 (5-20) 

50 0.35629 (15-5) 1.497732 (35-25) 

55 0.370807 (20-5) 1.504534 (20-5) 

60 0.330891 (15-5) 1.432913 (30-10) 

65 0.349321 (15-5) 1.326747 (20-5) 

Note: number in bracket () is the configuration number 

Meanwhile, Appendix G and I shows the RMSE and GRMSE value based on 

Simulated Data Set II in the training phase. Table 4.7 simplifies the result from 

Appendix G and I to present the smallest value of RMSE and GRMSE from different 

number of outliers based on the training phase using Simulated Data Set II. However, 

in the training phase, the smallest value of RMSE and GRMSE were at the 65% of 

outliers where the value was 0.211321 (30-35) and 1.030024 (20-20) respectively.  
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Table 4.7 

The comparison of RMSE and GRMSE value in the training phase using Data Set II 

Outliers (%) RMSE GRMSE 

0 0.287707 (15-15) 1.207665 (10-5) 

5 0.288416 (30-10) 1.278256 (30-10) 

10 0.288307 (35-15) 1.277456 (15-20) 

15 0.262842 (15-5) 1.248533 (15-5) 

20 0.274904 (40-25) 1.261456 (40-25) 

25 0.284321 (25-5) 1.253568 (30-30) 

30 0.285432 (30-15) 1.204543 (35-20) 

35 0.285009 (25-10) 1.235035 (15-35) 

40 0.25421 (25-45) 1.272884 (30-10) 

45 0.254032 (20-45) 1.211343 (40-20) 

50 0.261945 (5-30) 1.235336 (20-10) 

55 0.244938 (35-10) 1.209454 (25-15) 

60 0.265741 (40-45) 1.261456 (5-30) 

65 0.211321 (30-35) 1.030024 (20-20) 

Note: number in bracket () is the configuration number 

Moreover, Appendix H and I show the RMSE and GRMSE value based on 

Simulated Data Set II in the testing phase. Table 4.8 presents the smallest value of 

RMSE and GRMSE from a different number of outliers based on the testing phase 

using Simulated Data Set II. However, in the testing phase, the smallest value of 
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RMSE and GRMSE were 0.2903942 (15-5) at the 65% of outliers and 1.2150944 (30-

5) at the 10% of outliers respectively. 

Table 4.8 

The comparison of RMSE and GRMSE value in the testing phase using Data Set II 

Outliers (%) RMSE GRMSE 

0 0.303667 (10-5) 1.341769 (5-20) 

5 0.322399 (40-5) 1.2222512 (35-5) 

10 0.313086 (35-5) 1.2150944 (30-5) 

15 0.318456 (15-5) 1.2207208 (10-5) 

20 0.322231 (5-5) 1.226402 (35-5) 

25 0.628105 (25-5) 1.5509367 (25-5) 

30 0.322814 (10-5) 1.3063653 (5-5) 

35 0.3125483 (25-5) 1.32419367 (10-5) 

40 0.32102493 (10-5) 1.5487746 (5-5) 

45 0.3395302 (5-5) 1.5596397 (35-5) 

50 0.32139472 (30-5) 1.5421367 (15-5) 

55 0.31940845 (5-5) 1.5594327 (40-5) 

60 0.32193024 (20-5) 1.5509367 (30-5) 

65 0.2903942 (15-5) 1.5829787 (40-5) 

Note: number in bracket () is the configuration number 
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4.6 Convergence Test 

The convergence test was conducted after the BPNN model had been enhanced. This 

research tests each lag to identify the number of epochs that were more suitable for 

this validation test. Appendix K shows the results of convergence test for each lag 

that was tested for a maximum number of epochs 1000. 

 
Based on Figure 4.6, the convergence test value for the enhanced model was 

illustrated using the line graph. It is clearly seen that lag 25 shows better convergence 

compared to other lags. Furthermore, the best performance of the enhanced model 

shows at epoch 100 which is at lag 25. 

 

Figure 4.6. Convergence Test from different epoch 
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4.7 Forecasting 

The final step in this analysis involved forecasting. The forecasting method 

implemented was a 3-step-ahead approach, in which the FBM KLCI datasets were 

analyzed using three models: BPNN, BPNN with LMedS, and the enhanced BPNN 

model. As suggested by Cheng et al. (2023), the purpose of using the 3-step-ahead 

prediction is to estimate the next three data points in a sequence, providing better 

insights into future trends and potentially enabling more accurate long-term 

predictions. These models were evaluated to determine the accuracy of the results in 

comparison to the actual value of the FBM KLCI stock market.  

Each model generated three-step-ahead forecasts, which were subsequently compared 

to the actual closing prices. Table 4.9 demonstrated that the three-step-ahead values 

from the enhanced BPNN model were closer to the real values. This finding indicated 

that the enhanced BPNN model was more accurate compared to the BPNN model and 

the BPNN with LMedS model. 

Table 4.9 

Prediction 1-step ahead, 2-step ahead, and 3-step ahead 

Model 1-step ahead 2-step ahead 3-step ahead 

BPNN 1496.66 1496.42 1497.92 

BPNN with LMedS 1495.06 1495.67 1497.69 

Enhanced BPNN 1494.66 1496.63 1497.66 

Real Value 1487.26 1483.38 1473.91 
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4.8 Summary 

This chapter presented the data analysis and discussion that addressed all of the 

study's objectives. The first objective was fulfilled by identifying the severity of the 

outlier problem. Next, an enhanced BPNN model for FBM KLCI stock market was 

developed. Subsequently, the performance comparison of the enhanced with the 

ordinary BPNN model and BPNN-LMedS model were applied to FBM KLCI data 

and be conducted using RMSE and GRMSE to determine the model with the smallest 

error value. Thereafter, the reliability of the enhanced BPNN model were analyzed 

with varying numbers of epochs.  
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CHAPTER 5 

CONCLUSION 

5.1 Review Summary 

This part explained the result from the analysis of the backpropagation neural network 

(BPNN). There are four sections which is diagnostic test, comparison of both BPNN 

model and Enhanced BPNN model using the real dataset, FTSE Bursa Malaysia 

Kuala Lumpur Composite Index (FBM KLCI) stock market data and last but not least, 

the convergence test was tested using the different number of epochs.  

Based on the first objective, which was to identify the severity of outliers problems in 

the FBM KLCI dataset, was achieved. This research identifies that outliers exist in the 

closing price from FBM KLCI stock market. Based on the test of outliers, this 

research clearly seen that the outliers exist more in lag 40 and lag 50. Moreover, the 

highest percentage of the outliers got up to 65%, it shows that the enhanced model is 

really needed since based on the previous study, the BPNN model can only cater the 

outliers problem up to 50% of outliers only. 

In order to evaluate the performance of the ordinary and enhanced model on real FBM 

KLCI dataset which contained outliers problems, a numerical comparison of the 

BPNN model and enhanced BPNN model was conducted on the real FBM KLCI 

dataset. The result shows that the RMSE and GRMSE value got the smallest value by 

using the enhanced BPNN model compared to ordinary BPNN model with the higher 

number of input lags and the lower number of hidden nodes. Furthermore, the best 
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configuration in training and testing phase by using the BPNN model is 40-5 and 30-

25 respectively. This research achieved the third objective, which was to develop an 

enhanced BPNN model for FBM KLCI dataset with outliers problems. The best 

configuration in training and testing phase is 35-5 and 20-10 respectively.  

Furthermore, the result shows that smallest value based on the performance evaluation 

of the enhanced BPNN model using Simulated Data Set I was at 65% of outliers 

where the value of RMSE and GRMSE were 0.309335 (20-10) and 1.300325 (20-5) 

respectively. Based on the performance of the enhanced BPNN model checking, the 

best configuration shows the average number of input lags and the smaller number of 

hidden nodes. The evaluation by using Simulated Data Set II got the smallest value of 

RMSE and GRMSE at the 65% of outliers where the value was 0.211321 (30-35) and 

1.030024 (20-20) respectively. 

The last objective, which was to validate the enhanced model using time series 

bootstrap technique was achieved. Lastly, in the convergence test, the lag that shows 

the better convergence compared to other lags is lag 25.  

The improved BPNN model is designed to reduce network errors by effectively 

handling outliers, which in turn boosts prediction accuracy. This makes the study 

highly valuable for a range of stock market participants. By using this enhanced 

model, both investors and speculators stand to benefit through more accurate 

predictions, potentially leading to higher profits. With the model’s optimization, 

investors can make better-informed decisions about stock prices and market trends, 
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increasing their chances of making profitable trades using the enhanced BPNN model 

with two-layer of 20-20 configurations. 

Overall, all the objectives were successfully achieved. This model was expected to 

assist investors, economists, policymakers, and financial institutions in their 

forecasting activities with high accuracy. 

5.2 Limitation 

In this study, focus was exclusively placed on the Malaysian stock market, 

specifically the FBM KLCI index and only closing prices were used as input 

variables. Furthermore, during the backpropagation training process, OLS estimators 

were replaced with LMedS estimators due to their ability to effectively address issues 

related to outliers. Consequently, the enhanced BPNN model was utilized to forecast 

the closing prices of the FBM KLCI. Model performance was evaluated using Root 

Mean Squared Error (RMSE) and Geometric Root Mean Square Error (GRMSE) as 

error measures. 

5.3 Recommendation 

Based on the findings of this study, future research will incorporate data from 

multiple stock markets to analyze model performance and determine the optimal 

configuration. Additionally, further refinement of the enhanced BPNN model was 

recommended, either through the integration of alternative metaheuristic algorithms 

or by modifying the function to enhance performance.  
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Moreover, the performance of the enhanced BPNN model using existing 

metaheuristic algorithms such as Particle Swarm Optimization (PSO) as suggested by 

(Li et al., 2021), will be compared to the DPSG-LMedS BPNN model in the future 

research work.   
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Appendix A  

Python Code for Enhanced Backpropagation Neural Network (BPNN) 

Model 

 

 

import scipy.io as sio 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import MinMaxScaler 

from keras.models import Sequential 

from keras.layers.core import Dense 

import keras 

import tensorflow as tf 

from matplotlib import pyplot as plt 

import pandas as pd 

 

# parameters 

tf.compat.v1.disable_eager_execution() 

useScaling = 1 

useNormalization = 1 

learningRate = 1e-3 

weightDecay = 1e-3 / 200 

maxEpochs = 1000; 

miniBatchSize = 2048 

lag = 15 

# hidden layer sizes 

h1 = 10 

h2 = 10 

h3 = 1 

 

 

data= pd.read_csv("C:\\Users\\HP\\Downloads\\Analysis using Python\\Coding\\Used 

data\\Simulated1.csv") 
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uall=np.float32(data.to_numpy()) 

 

p,q = uall.shape 

 

uall = np.float32(uall) 

 

 

# normalize so that average mean and zero-variance 

if useNormalization: 

    normalizer = StandardScaler() 

    uall_normParam = normalizer.fit(uall) 

    uall_norm = uall_normParam.transform(uall) 

 

# scale the data so that it becomes between 0 and 1 

if useScaling: 

    mm_scaler = MinMaxScaler(feature_range=(0, 1), copy=True) 

    uall_scaled = mm_scaler.fit_transform(uall_norm) 

 

     

 

trnsize = round(p/2); 

tstsize = round(p/2); 

lagx = 0 

 

# psi_trn 

psi_trn = uall_scaled[lag:trnsize-1] 

lag2 = lag-1 

for it in range(lag2): 

    takenlagstart = lag2-it 

    takenlagend = trnsize-(it+2) 

    ut_trn = uall_scaled[takenlagstart:takenlagend] 

    psi_trn = np.concatenate((ut_trn, psi_trn), 1) 
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# psi_tst 

psi_tst = uall_scaled[(tstsize+lag-1):(p-1)] 

 

lag2 = lag-1 

for it in range(lag2): 

    takenlagstart = tstsize+lag2-it-1 

    takenlagend = p-it-2 

    ut_tst = uall_scaled[takenlagstart:takenlagend] 

    psi_tst = np.concatenate((ut_tst, psi_tst), 1) 

     

     

     

yt_trn = uall_scaled[(lag+1):round(p/2)] 

yt_tst = uall_scaled[(round(p/2)+lag):p] 

 

 

#############################################################################

## 

# define and create the MLP network 

model = Sequential() 

model.add(Dense(h1, input_dim=len(psi_trn[0]), activation="relu")) 

model.add(Dense(h2, activation="relu")) 

model.add(Dense(h3, activation="linear")) 

 

def my_loss_fn(y_true, y_pred): 

     

    squared_difference = tf.square(y_true - y_pred)*x (1-exp((0.35*log(10)(-

3.3)(0.06))+(0.93*1.2)+1.26)/(4000+(2.23*(-3.3)))) 

    return tf.reduce_mean(squared_difference, axis=-1)  # Note the `axis=-1` 
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#Enhanced = ElMed x (1-exp((0.35*log(10)(-3.3)(0.06))+(0.93*1.2)+1.26)/(4000+(2.23*(-

3.3)))) 

 

#RMSE 

def my_loss_fn2(y_true, y_pred): 

    squared_difference = tf.square((((y_pred - y_true) ** 2))) 

    return tf.reduce_mean(squared_difference, axis=-1)  # Note the `axis=-1` 

 

#MSPE 

#def my_loss_fn3(y_true, y_pred): 

#    squared_difference = mean_squared_error(y_true['actual'], predictions) 

#    return tf.reduce_mean(squared_difference, axis=-1)  # Note the `axis=-1` 

 

#GRMSE 

def my_loss_fn4(y_true, y_pred): 

    squared_difference = tf.square(np.prod((y_true / y_pred)) - 1) 

    return tf.reduce_mean(squared_difference, axis=-1)  # Note the `axis=-1` 

 

# train the model 

opt = tf.keras.optimizers.legacy.Adam(lr = learningRate, decay = weightDecay) 

model.compile(loss=my_loss_fn2, optimizer=opt) 

  

# train the model 

print("[INFO] training model...") 

ccc=model.fit(psi_trn, yt_trn, validation_data=(psi_tst, yt_tst), epochs=maxEpochs, 

batch_size=miniBatchSize) 

 

# make predictions on the training data 

print("Predicting Training Set...") 

preds_trn = model.predict(psi_trn) 

yhat_trn = preds_trn.flatten() 

resid_trn = yt_trn.flatten() - yhat_trn 

percentDiff_trn = (resid_trn / yt_trn) * 100 
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absPercentDiff_trn = np.abs(percentDiff_trn) 

mean_trn = np.mean(absPercentDiff_trn) 

std_trn = np.std(absPercentDiff_trn) 

plt.figure() 

jj,kk = yt_trn.shape 

plt.plot(np.arange(1,jj+1), yt_trn) 

plt.plot (np.arange(1,jj+1), yhat_trn, ':') 

plt.xlabel("Cases (dimensionless)") 

plt.ylabel("Angular Velocity (w)") 

plt.title("One Step Ahead Prediction (Training Set)") 

plt.show() 

 

# make predictions on the testing data 

print("Predicting Testing Set...") 

preds_tst = model.predict(psi_tst) 

yhat_tst = preds_tst.flatten() 

resid_tst = yt_tst.flatten() - yhat_tst 

percentDiff_tst = (resid_tst / yt_tst) * 100 

absPercentDiff_tst = np.abs(percentDiff_tst) 

mean_tst = np.mean(absPercentDiff_tst) 

std_tst = np.std(absPercentDiff_tst) 

plt.figure() 

jj,kk = yt_tst.shape 

plt.plot(np.arange(1,jj+1), yt_tst) 

plt.plot (np.arange(1,jj+1), yhat_tst, ':') 

plt.xlabel("Cases (dimensionless)") 

plt.ylabel("Angular Velocity (w)") 

plt.title("One Step Ahead Prediction (Testing Set)") 

plt.legend(['Actual', 'Forecasted']); 

plt.show() 

 

# plot the residuals  

plt.figure() 
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plt.subplot(211) 

jj,kk = psi_trn.shape 

plt.plot(np.arange(1,jj+1), resid_trn) 

plt.xlabel("Cases (dimensionless)") 

plt.ylabel("Angular Velocity Difference (w)") 

plt.title("Residuals Plot (Training & Testing Set)") 

plt.subplot(212) 

jj,kk = psi_tst.shape 

plt.plot(np.arange(1,jj+1), resid_tst) 

plt.xlabel("Cases (dimensionless)") 

plt.ylabel("Angular Velocity Difference (w)") 

# plt.title("Residuals Plot (Testing Set)") 

plt.show() 

 

# histogram 

plt.figure() 

num_bins = 15 

plt.subplot(211) 

n, bins, patches = plt.hist(resid_trn, num_bins, facecolor='blue', alpha=0.5) 

plt.title("Residuals Histogram (Training & Testing Set)") 

plt.xlabel("Bins") 

plt.ylabel("Frequency") 

plt.subplot(212) 

n, bins, patches = plt.hist(resid_tst, num_bins, facecolor='blue', alpha=0.5) 

plt.xlabel("Bins") 

plt.ylabel("Frequency") 

plt.show() 

 

# autocorrelation 

plt.figure() 

plt.subplot(211) 

plt.acorr(resid_trn) 

plt.title("Autocorrelation (Training & Testing Set)") 
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plt.xlabel("Lags") 

plt.ylabel("ACF") 

plt.subplot(212) 

plt.acorr(resid_tst) 

plt.xlabel("Lags") 

plt.ylabel("ACF") 

plt.show() 

 

# crosscorrelation 

plt.figure() 

plt.subplot(211) 

plt.xcorr(resid_trn, ut_trn.flatten()) 

plt.title("Crosscorrelation between Input 1 & Residuals (Training & Testing Set)") 

plt.xlabel("Lags") 

plt.ylabel("CCF") 

plt.subplot(212) 

plt.xcorr(resid_tst, ut_tst.flatten()) 

plt.xlabel("Lags") 

plt.ylabel("CCF") 

plt.show() 

 

plt.figure() 

plt.subplot(211) 

plt.xcorr(resid_trn, yt_trn.flatten()) 

plt.title("Crosscorrelation between Input 2 & Residuals (Training & Testing Set)") 

plt.xlabel("Lags") 

plt.ylabel("CCF") 

plt.subplot(212) 

plt.xcorr(resid_tst, yt_tst.flatten()) 

plt.xlabel("Lags") 

plt.ylabel("CCF") 

plt.show() 
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def rmse(predictions, targets): 

    """Calculate root mean squared error between two time series""" 

    return np.sqrt(((predictions - targets) ** 2).mean()) 

 

rmse_train = rmse(resid_trn, yt_trn) 

rmse_test = rmse(resid_tst, yt_tst) 

 

print(rmse_train) 

print(rmse_test)
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Appendix B 

Performance of the BPNN, BPNN with LMedS and Enhanced BPNN Model on Real Data, FBM KLCI stock market 

  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

5 

5 0.662752 0.472155 0.664186 0.482093 0.662216 0.477726 1.640006 1.464304 1.638502 1.480626 1.638965 1.472271 

10 0.670994 0.480233 0.663848 0.475844 0.658419 0.479372 1.653010 1.476008 1.648521 1.472004 1.632699 1.474569 

15 0.671108 0.473039 0.663664 0.475984 0.677336 0.517913 1.652941 1.465299 1.640292 1.468027 1.665490 1.534244 

20 0.667396 0.476932 0.661143 0.475123 0.671097 0.475716 1.646816 1.470987 1.646790 1.469485 1.652891 1.469242 

25 0.670143 0.475070 0.667345 0.475632 0.670035 0.472453 1.651446 1.468344 1.645492 1.481313 1.651192 1.464443 

30 0.671609 0.474691 0.665342 0.476669 0.671516 0.475034 1.653796 1.467775 1.641000 1.462110 1.653601 1.468250 

35 0.671009 0.475874 0.665536 0.475745 0.670497 0.473805 1.652778 1.469506 1.641873 1.468805 1.651944 1.466456 

40 0.671348 0.475223 0.661543 0.471637 0.670574 0.476960 1.653305 1.468519 1.637351 1.468600 1.652046 1.471077 

45 0.670889 0.474097 0.663345 0.471425 0.671349 0.474642 1.652560 1.466871 1.651169 1.491456 1.653328 1.467687 
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  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

10 

5 0.667005 0.478524 0.662335 0.468906 0.668429 0.476610 1.647811 1.473773 1.652466 1.479260 1.650097 1.470866 

10 0.667969 0.477312 0.663426 0.475823 0.666570 0.509837 1.649610 1.472149 1.648699 1.468774 1.652978 1.523672 

15 0.669401 0.478072 0.661645 0.481579 0.673265 0.481458 1.651682 1.473061 1.648665 1.480045 1.658330 1.478336 

20 0.666761 0.477817 0.667432 0.473670 0.669612 0.477257 1.647317 1.472630 1.647983 1.470782 1.652175 1.471836 

25 0.669853 0.476157 0.668444 0.482093 0.668177 0.471677 1.652391 1.470230 1.647791 1.470985 1.649575 1.463619 

30 0.669882 0.476003 0.663848 0.475844 0.669156 0.473831 1.652463 1.469996 1.645210 1.464032 1.651238 1.466862 

35 0.666471 0.468706 0.663664 0.475984 0.669845 0.477883 1.646972 1.459436 1.642849 1.475643 1.652331 1.472687 

40 0.671332 0.482237 0.667540 0.472878 0.668127 0.476790 1.654955 1.479337 1.645433 1.475424 1.649517 1.471111 

45 0.668847 0.473988 0.662601 0.473504 0.669553 0.476530 1.650723 1.467015 1.643901 1.478859 1.651922 1.470739 

15 

5 0.641549 0.499504 0.662752 0.472155 0.669429 0.478683 1.614443 1.507490 1.650097 1.470866 1.653816 1.474679 

10 0.662468 0.472787 0.670994 0.480233 0.671096 0.484405 1.643086 1.466390 1.649447 1.473357 1.656197 1.482945 

15 0.664454 0.471668 0.671108 0.473039 0.665530 0.471523 1.645210 1.464032 1.650217 1.474492 1.646923 1.463798 

20 0.668260 0.476251 0.668177 0.461132 0.669279 0.483240 1.651770 1.470983 1.644627 1.469324 1.653150 1.481093 
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  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

25 0.666444 0.473154 0.657189 0.469727 0.666460 0.473227 1.648477 1.466170 1.649850 1.476133 1.648367 1.466219 

30 0.665955 0.472750 0.656631 0.474076 0.667499 0.476321 1.647626 1.465644 1.638502 1.480626 1.650193 1.470810 

35 0.666943 0.474061 0.658087 0.478769 0.668320 0.479107 1.649110 1.467404 1.648521 1.472004 1.651620 1.474940 

40 0.667285 0.477046 0.659985 0.478587 0.667430 0.473313 1.649607 1.471770 1.640292 1.468027 1.650009 1.466398 

45 0.666583 0.473032 0.659113 0.481130 0.666095 0.471860 1.648515 1.465944 1.647819 1.476954 1.647661 1.464145 

20 

5 0.656130 0.492681 0.631344 0.467543 0.615003 0.522368 1.636986 1.496921 1.651770 1.470983 1.589611 1.546720 

10 0.668899 0.505632 0.653957 0.478879 0.581536 0.454544 1.656997 1.516662 1.648477 1.466170 1.528544 1.441731 

15 0.666864 0.477336 0.656075 0.479705 0.665311 0.473031 1.651281 1.472824 1.647626 1.465644 1.648632 1.466451 

20 0.665885 0.477754 0.654884 0.477493 0.666042 0.483818 1.649447 1.473357 1.652941 1.465299 1.651095 1.483060 

25 0.666289 0.478569 0.651134 0.485324 0.663865 0.472938 1.650217 1.474492 1.646816 1.470987 1.646020 1.466116 

30 0.662975 0.475147 0.654302 0.463543 0.665854 0.477046 1.644627 1.469324 1.651446 1.468344 1.649316 1.472276 

35 0.666056 0.479600 0.653422 0.475553 0.666730 0.480681 1.649850 1.476133 1.653796 1.467775 1.650935 1.477750 

40 0.665715 0.475846 0.655523 0.479434 0.663723 0.472320 1.649199 1.470487 1.652778 1.469506 1.646575 1.465981 
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  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

45 0.666548 0.477486 0.650494 0.483523 0.663953 0.475855 1.650505 1.472822 1.647791 1.470985 1.646110 1.470419 

25 

5 0.662465 0.468906 0.650469 0.499259 0.651612 0.490523 1.646907 1.461340 1.653010 1.476008 1.634116 1.494808 

10 0.664108 0.475823 0.659942 0.483758 0.663974 0.481865 1.648510 1.470854 1.652941 1.465299 1.648416 1.479606 

15 0.666430 0.481579 0.661071 0.472794 0.652654 0.474448 1.652466 1.479260 1.646816 1.470987 1.630082 1.468815 

20 0.663453 0.473670 0.656280 0.473552 0.657162 0.494181 1.648699 1.468774 1.664343 1.447603 1.639657 1.499030 

25 0.664186 0.482093 0.660999 0.478252 0.664310 0.477196 1.648665 1.480045 1.632699 1.474569 1.648772 1.473142 

30 0.663848 0.475844 0.660410 0.473684 0.662804 0.475522 1.647983 1.470782 1.665490 1.534244 1.646113 1.470209 

35 0.663664 0.475984 0.661486 0.476440 0.660980 0.474636 1.647791 1.470985 1.652891 1.469242 1.643324 1.468975 

40 0.662140 0.472878 0.663302 0.476905 0.661894 0.473282 1.645226 1.466477 1.651192 1.464443 1.644701 1.466898 

45 0.662623 0.473504 0.662916 0.475594 0.663262 0.475767 1.645924 1.467272 1.651281 1.472824 1.646795 1.470468 

30 
5 0.656277 0.482098 0.664200 0.490480 0.663412 0.474134 1.638502 1.480626 1.637351 1.468600 1.649965 1.468718 

10 0.662581 0.476177 0.657948 0.476737 0.650469 0.499259 1.648521 1.472004 1.651169 1.491456 1.634567 1.508933 
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  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

15 0.656869 0.473406 0.651050 0.478823 0.659942 0.483758 1.640292 1.468027 1.652466 1.479260 1.643886 1.483220 

20 0.662589 0.479835 0.659267 0.482879 0.661071 0.472794 1.647819 1.476954 1.648699 1.468774 1.645170 1.466366 

25 0.659706 0.464590 0.659794 0.477955 0.656280 0.473552 1.643938 1.455309 1.646907 1.461340 1.638110 1.468092 

30 0.661555 0.478927 0.651830 0.478924 0.660999 0.478252 1.646475 1.475839 1.648510 1.470854 1.644894 1.474373 

35 0.661486 0.476440 0.670497 0.473805 0.660410 0.473684 1.645806 1.471706 1.652466 1.479260 1.644289 1.468009 

40 0.661402 0.476905 0.670574 0.476960 0.659660 0.473114 1.645521 1.472729 1.645492 1.481313 1.642961 1.466941 

45 0.662916 0.479935 0.671349 0.474642 0.660335 0.474424 1.648247 1.477024 1.641000 1.462110 1.643844 1.468910 

35 

5 0.663420 0.538865 0.666864 0.477336 0.521857 0.461651 1.656305 1.571833 1.516604 1.453920 1.477958 1.458276 

10 0.658923 0.502608 0.665885 0.477754 0.657306 0.462124 1.647216 1.513751 1.637351 1.468600 1.643419 1.453981 

15 0.660260 0.473839 0.666289 0.478569 0.660452 0.482218 1.646790 1.469485 1.651169 1.491456 1.646278 1.480476 

20 0.659249 0.482256 0.668260 0.476251 0.664200 0.490480 1.645492 1.481313 1.633582 1.457752 1.653681 1.494168 

25 0.657189 0.469727 0.666444 0.473154 0.657948 0.476737 1.641000 1.462110 1.646475 1.475839 1.642174 1.472389 

30 0.656631 0.474076 0.665955 0.472750 0.651050 0.478823 1.640256 1.468714 1.645806 1.471706 1.632056 1.475913 
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  RMSE GRMSE 

Input 

Lags 

Hidden 

Nodes 

BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

35 0.658087 0.478769 0.666943 0.474061 0.659267 0.482879 1.642849 1.475643 1.645521 1.472729 1.644571 1.482091 

40 0.659985 0.478587 0.667285 0.477046 0.659794 0.477955 1.645433 1.475424 1.648247 1.477024 1.645094 1.474496 

45 0.659113 0.481130 0.666583 0.473032 0.651830 0.478924 1.643901 1.478859 1.642773 1.476733 1.632910 1.475826 

40 

5 0.633592 0.467005 0.553211 0.476555 0.641201 0.482612 1.606661 1.458996 1.640957 1.482443 1.621567 1.482817 

10 0.653957 0.476273 0.663848 0.475844 0.650680 0.473403 1.638946 1.472758 1.647983 1.470782 1.632850 1.467694 

15 0.656075 0.473874 0.663664 0.475984 0.653707 0.470076 1.641873 1.468805 1.647791 1.470985 1.637999 1.463066 

20 0.653042 0.473614 0.660999 0.478252 0.650928 0.478455 1.637351 1.468600 1.645226 1.466477 1.633397 1.475163 

25 0.659482 0.487875 0.660410 0.473684 0.657254 0.477244 1.651169 1.491456 1.651682 1.473061 1.644063 1.473698 

30 0.651335 0.466622 0.661486 0.476440 0.655640 0.478212 1.633582 1.457752 1.647317 1.472630 1.640863 1.474613 

35 0.654431 0.478879 0.661071 0.472794 0.656682 0.480110 1.638640 1.475596 1.652391 1.470230 1.642505 1.477503 

40 0.657019 0.479705 0.656280 0.473552 0.655410 0.478927 1.642773 1.476733 1.652463 1.469996 1.640648 1.476203 

45 0.655891 0.483571 0.660999 0.478252 0.653737 0.472000 1.640957 1.482443 1.653590 1.476544 1.637444 1.465467 
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Appendix C 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - RMSE 

Training value  

Input 

Lags 

Hidden 

Nodes 

Outliers 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 0.450142 0.373162 0.471096 0.485872 0.488382 0.447253 0.449358 0.487633 0.494545 0.453472 0.441219 0.386238 0.445801 0.453472 

10 0.450623 0.444911 0.487959 0.449691 0.451217 0.442434 0.445155 0.445737 0.454576 0.453490 0.453082 0.446593 0.438536 0.453490 

15 0.453731 0.432660 0.451266 0.450655 0.455530 0.451514 0.440373 0.463326 0.458522 0.452468 0.449815 0.457113 0.454685 0.452468 

20 0.452363 0.450822 0.453750 0.450142 0.448983 0.447833 0.451955 0.455046 0.463326 0.434473 0.452156 0.455053 0.454198 0.444159 

25 0.392210 0.453416 0.449915 0.450623 0.453772 0.452066 0.451982 0.454736 0.454547 0.453705 0.450084 0.457007 0.451367 0.434433 

30 0.455439 0.450508 0.449541 0.453731 0.449418 0.450570 0.447525 0.453733 0.453965 0.451593 0.452243 0.457787 0.453965 0.450508 

35 0.454253 0.453060 0.451264 0.452363 0.453077 0.452140 0.454863 0.456911 0.454878 0.452065 0.449983 0.457921 0.454878 0.453060 

40 0.456384 0.451690 0.449928 0.453241 0.454514 0.451744 0.454266 0.456083 0.457863 0.453592 0.451356 0.455897 0.457863 0.451690 

45 0.449853 0.450673 0.452163 0.449154 0.452084 0.452105 0.451110 0.453655 0.455484 0.455630 0.452969 0.453335 0.455484 0.450673 

10 

5 0.450084 0.473454 0.487633 0.453705 0.423050 0.449796 0.475820 0.447112 0.441219 0.375665 0.450759 0.458512 0.365543 0.471096 

10 0.452243 0.450985 0.445737 0.449075 0.455439 0.447139 0.449711 0.458512 0.453082 0.454122 0.454694 0.461534 0.444911 0.487959 

15 0.449983 0.455046 0.463326 0.448304 0.454253 0.447768 0.445921 0.461534 0.449815 0.454865 0.455046 0.463326 0.432660 0.451266 
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Input 

Lags 

Hidden 

Nodes 

Outliers 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

20 0.454685 0.453710 0.451211 0.449973 0.456384 0.450707 0.450359 0.453664 0.450759 0.438536 0.453710 0.451211 0.450822 0.453750 

25 0.451394 0.453705 0.450084 0.448466 0.449853 0.450067 0.451414 0.453429 0.454694 0.454685 0.453705 0.450084 0.434433 0.454865 

30 0.454839 0.451593 0.452243 0.452081 0.451375 0.453813 0.453730 0.452010 0.454371 0.451394 0.451593 0.452243 0.446593 0.438536 

35 0.451211 0.452065 0.449983 0.452543 0.450487 0.455934 0.452308 0.453060 0.451264 0.454839 0.452065 0.449983 0.457113 0.454685 

40 0.450084 0.453592 0.451356 0.451036 0.454158 0.454696 0.453160 0.451690 0.449928 0.456928 0.449541 0.453731 0.454995 0.454329 

45 0.452243 0.455630 0.452969 0.451470 0.453508 0.453193 0.453189 0.450673 0.452163 0.451538 0.451264 0.452363 0.452065 0.449983 

15 

5 0.450067 0.450239 0.436904 0.447349 0.441561 0.437947 0.436275 0.446593 0.438536 0.454122 0.454379 0.487633 0.379449 0.464192 

10 0.453813 0.451889 0.457784 0.448172 0.449761 0.444678 0.456957 0.457113 0.454685 0.454865 0.448814 0.445737 0.454122 0.454379 

15 0.455934 0.454198 0.444159 0.450985 0.445632 0.444672 0.458250 0.454122 0.458512 0.453082 0.447277 0.455134 0.454865 0.448814 

20 0.454696 0.451367 0.434433 0.450842 0.441050 0.453531 0.455401 0.454865 0.461534 0.449815 0.446213 0.453658 0.452065 0.454576 

25 0.453193 0.447277 0.455134 0.454151 0.449290 0.451888 0.451551 0.452156 0.453664 0.450759 0.447277 0.446593 0.438536 0.458522 

30 0.458664 0.446213 0.453658 0.454723 0.454012 0.454787 0.454796 0.452889 0.453429 0.454694 0.446213 0.457113 0.454685 0.459704 

35 0.450439 0.453730 0.450771 0.452362 0.452710 0.454585 0.452638 0.452491 0.452010 0.454371 0.453730 0.454995 0.454329 0.451337 

40 0.454659 0.452844 0.454832 0.455887 0.453610 0.452483 0.455879 0.454685 0.456247 0.456556 0.452844 0.455897 0.452349 0.455897 

45 0.454448 0.452793 0.453474 0.455631 0.447277 0.447041 0.454220 0.454329 0.452793 0.453474 0.452793 0.453335 0.456286 0.453335 

20 
5 0.453012 0.379449 0.464192 0.504881 0.456339 0.338947 0.387565 0.473454 0.487633 0.450239 0.436904 0.485872 0.494545 0.453472 

10 0.453259 0.454122 0.454379 0.448603 0.444484 0.449747 0.453258 0.450985 0.445737 0.451889 0.457784 0.449691 0.454865 0.309335 
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Input 

Lags 

Hidden 

Nodes 

Outliers 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

15 0.455867 0.454865 0.448814 0.450581 0.454418 0.458664 0.438579 0.451367 0.434433 0.454198 0.444159 0.450655 0.452156 0.454658 

20 0.455456 0.452156 0.450043 0.452381 0.459187 0.450439 0.463858 0.447277 0.455134 0.451367 0.434433 0.450142 0.452889 0.434473 

25 0.454615 0.452889 0.457007 0.453990 0.453373 0.454659 0.453012 0.455134 0.452054 0.447277 0.455134 0.450623 0.452491 0.443136 

30 0.449589 0.452491 0.457787 0.453525 0.454139 0.454448 0.453259 0.453658 0.451394 0.446213 0.453658 0.450508 0.449541 0.455895 

35 0.458457 0.455334 0.457921 0.458325 0.455175 0.455622 0.455867 0.450771 0.454839 0.459704 0.455053 0.453060 0.451264 0.454502 

40 0.453082 0.452349 0.455897 0.454477 0.454981 0.455080 0.455456 0.454832 0.456928 0.451337 0.452054 0.451690 0.449928 0.456408 

45 0.449815 0.456286 0.453335 0.452697 0.454604 0.453757 0.452564 0.453474 0.451538 0.452793 0.453474 0.450673 0.452163 0.455558 

25 

5 0.438536 0.494545 0.453472 0.442839 0.429941 0.446236 0.455134 0.441219 0.386238 0.445801 0.464192 0.494545 0.386238 0.445801 

10 0.454685 0.454576 0.453490 0.453279 0.457232 0.450986 0.453658 0.453082 0.446593 0.438536 0.454379 0.454576 0.446593 0.438536 

15 0.454379 0.458522 0.452468 0.444129 0.451022 0.446978 0.438536 0.449815 0.457113 0.454685 0.448814 0.458522 0.454379 0.438536 

20 0.448814 0.459704 0.455053 0.453247 0.454615 0.457823 0.454685 0.450759 0.458512 0.453082 0.446593 0.438536 0.448814 0.454685 

25 0.450043 0.451337 0.452054 0.451428 0.449589 0.445596 0.454329 0.454694 0.461534 0.449815 0.457113 0.454685 0.450043 0.454329 

30 0.452163 0.453769 0.451394 0.457187 0.458457 0.454683 0.458512 0.453082 0.446593 0.438536 0.454122 0.454379 0.457007 0.454547 

35 0.453664 0.454738 0.454839 0.452106 0.457540 0.455856 0.461534 0.449815 0.457113 0.454685 0.454865 0.448814 0.457787 0.453965 

40 0.453429 0.454961 0.456928 0.443146 0.452500 0.449045 0.453664 0.450759 0.453429 0.454694 0.452156 0.450043 0.457921 0.454878 

45 0.452010 0.452909 0.451538 0.454631 0.454226 0.455807 0.456286 0.453335 0.450673 0.452163 0.450673 0.452163 0.456286 0.453335 

30 5 0.452054 0.447112 0.441219 0.430312 0.435308 0.443358 0.466238 0.445801 0.494545 0.453472 0.386238 0.445801 0.494545 0.453472 
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Input 

Lags 

Hidden 

Nodes 

Outliers 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 0.449541 0.458512 0.453082 0.457533 0.458698 0.426904 0.454379 0.441361 0.454576 0.453490 0.446593 0.438536 0.454368 0.434473 

15 0.451264 0.461534 0.449815 0.457075 0.463312 0.449820 0.448814 0.454685 0.458522 0.452468 0.457113 0.454685 0.432660 0.451266 

20 0.454379 0.453664 0.450759 0.453840 0.458524 0.457213 0.450043 0.454329 0.459704 0.455053 0.457113 0.454685 0.450822 0.453750 

25 0.448814 0.453429 0.454694 0.458683 0.445632 0.455091 0.457007 0.454547 0.451337 0.452054 0.454122 0.454379 0.453416 0.449915 

30 0.451264 0.452010 0.454371 0.453815 0.433680 0.457421 0.457787 0.453965 0.450508 0.449541 0.454865 0.448814 0.450508 0.449541 

35 0.449928 0.456247 0.456556 0.456241 0.451806 0.455932 0.457921 0.454878 0.453060 0.451264 0.453060 0.451264 0.453060 0.451264 

40 0.452163 0.454527 0.452791 0.454358 0.454525 0.453775 0.455897 0.457863 0.451690 0.449928 0.451690 0.449928 0.451690 0.449928 

45 0.455734 0.454724 0.454102 0.453598 0.453911 0.455819 0.450673 0.452163 0.450673 0.452163 0.450673 0.452163 0.450673 0.452163 

35 

5 0.460830 0.433861 0.453046 0.450952 0.441604 0.510441 0.386238 0.445801 0.473454 0.433861 0.473454 0.487633 0.386238 0.445801 

10 0.455368 0.444629 0.429335 0.432625 0.428087 0.457459 0.446593 0.438536 0.450985 0.444629 0.450985 0.445737 0.446593 0.438536 

15 0.463326 0.460593 0.454658 0.432792 0.453673 0.454071 0.457113 0.454685 0.451367 0.460593 0.455046 0.463326 0.457113 0.454685 

20 0.451211 0.454368 0.434473 0.454461 0.458705 0.452019 0.454122 0.454379 0.447277 0.454368 0.453710 0.451211 0.451337 0.452054 

25 0.450084 0.459592 0.443136 0.454260 0.453621 0.455734 0.454865 0.448814 0.455134 0.446593 0.438536 0.457113 0.454685 0.452054 

30 0.454878 0.454076 0.455895 0.458809 0.454601 0.460830 0.452156 0.450043 0.453658 0.457113 0.454685 0.454995 0.454329 0.451394 

35 0.450043 0.453154 0.454502 0.453593 0.453908 0.455368 0.452889 0.457007 0.450771 0.454995 0.454329 0.454736 0.454547 0.454839 

40 0.457007 0.455519 0.456408 0.452324 0.455255 0.456579 0.452349 0.455897 0.451690 0.456083 0.457863 0.451690 0.449928 0.456928 

45 0.457787 0.455269 0.455558 0.458029 0.455943 0.456026 0.456286 0.453335 0.450673 0.453655 0.455484 0.450673 0.452163 0.451538 
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Input 

Lags 

Hidden 

Nodes 

Outliers 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

40 

5 0.457921 0.386238 0.445801 0.450319 0.451695 0.445107 0.494545 0.453472 0.379449 0.464192 0.373053 0.354103 0.379449 0.464192 

10 0.454685 0.446593 0.438536 0.424814 0.454041 0.449521 0.454576 0.453490 0.454122 0.454379 0.454122 0.454379 0.454122 0.454379 

15 0.454329 0.457113 0.454685 0.455704 0.447750 0.460681 0.458522 0.452468 0.454865 0.448814 0.454865 0.448814 0.459704 0.455053 

20 0.457863 0.454995 0.454329 0.451024 0.453643 0.457221 0.454865 0.455046 0.463326 0.434473 0.452156 0.450043 0.451337 0.452054 

25 0.455484 0.454736 0.454547 0.458018 0.454945 0.451081 0.438536 0.453710 0.451211 0.443136 0.452889 0.457007 0.453769 0.451394 

30 0.446593 0.453733 0.453965 0.459237 0.457546 0.452369 0.454685 0.453705 0.450084 0.455895 0.452491 0.457787 0.454738 0.454839 

35 0.457113 0.456911 0.454878 0.453535 0.455318 0.456386 0.455334 0.457921 0.454878 0.454502 0.455334 0.457921 0.453060 0.454122 

40 0.451337 0.456083 0.457863 0.455402 0.446263 0.457617 0.452349 0.455897 0.457863 0.456408 0.452349 0.455897 0.451690 0.454865 

45 0.454685 0.453655 0.455484 0.459185 0.438877 0.456187 0.451538 0.450673 0.452163 0.455558 0.450673 0.452163 0.450673 0.452156 
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Appendix D 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - RMSE 

Testing value  

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 0.557426 0.356290 0.553274 0.543054 0.519956 0.551161 0.554471 0.545280 0.569370 0.552980 0.545061 0.545061 0.566665 0.370807 
10 0.554884 0.552308 0.529606 0.561660 0.563652 0.554582 0.546305 0.565324 0.551468 0.555437 0.545950 0.565886 0.552171 0.566995 
15 0.570969 0.495712 0.564314 0.559771 0.564454 0.559346 0.502357 0.551305 0.552172 0.563632 0.560931 0.558982 0.558228 0.553150 
20 0.561114 0.545351 0.565647 0.560656 0.560970 0.552690 0.561663 0.559735 0.562645 0.563088 0.555058 0.558963 0.567871 0.577234 
25 0.546216 0.569370 0.560891 0.565444 0.567277 0.567565 0.557426 0.555707 0.551600 0.568916 0.545950 0.548200 0.530796 0.564730 
30 0.547025 0.563406 0.557888 0.566706 0.555114 0.560557 0.554884 0.567619 0.557726 0.540845 0.546390 0.557672 0.537356 0.569001 
35 0.562162 0.567633 0.564426 0.564762 0.564218 0.562188 0.570969 0.560931 0.557726 0.568341 0.550522 0.566300 0.552059 0.566278 
40 0.557232 0.567589 0.557729 0.571442 0.569437 0.561802 0.569545 0.555058 0.570411 0.563577 0.560258 0.567381 0.567526 0.565029 
45 0.555108 0.560634 0.561094 0.561165 0.565222 0.567859 0.559727 0.565469 0.535820 0.567979 0.566061 0.565778 0.571474 0.566133 

10 

5 0.566665 0.552980 0.545061 0.566665 0.525453 0.561114 0.551575 0.543054 0.519956 0.551161 0.566665 0.535603 0.537654 0.533048 
10 0.564171 0.555437 0.545950 0.548200 0.561187 0.546216 0.553988 0.561660 0.563652 0.554582 0.548200 0.561636 0.544785 0.539980 
15 0.575181 0.566665 0.546390 0.557672 0.564957 0.547025 0.545280 0.569370 0.560891 0.546390 0.557672 0.559771 0.564781 0.568916 
20 0.561663 0.564171 0.565886 0.552171 0.557652 0.562162 0.565324 0.551468 0.549234 0.556331 0.539980 0.560656 0.563620 0.540845 
25 0.557426 0.575181 0.558982 0.558228 0.551305 0.557232 0.560809 0.571680 0.544699 0.546762 0.543774 0.565444 0.563632 0.560931 
30 0.554884 0.566038 0.558963 0.567871 0.559735 0.555108 0.565411 0.555707 0.551600 0.564171 0.565886 0.566706 0.563088 0.555058 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 0.570969 0.562377 0.560838 0.562604 0.562500 0.564068 0.566940 0.567619 0.557726 0.575181 0.558982 0.564762 0.566106 0.564288 
40 0.569545 0.552978 0.559959 0.556732 0.562072 0.573422 0.571640 0.563632 0.560931 0.572932 0.567381 0.571442 0.552978 0.559959 
45 0.559727 0.574284 0.568473 0.572720 0.567598 0.573173 0.568620 0.563088 0.555058 0.566300 0.566061 0.565738 0.574284 0.568473 

15 

5 0.562162 0.556654 0.517091 0.546106 0.543153 0.533048 0.536036 0.552980 0.545061 0.566665 0.356290 0.553274 0.330891 0.349321 
10 0.557232 0.562322 0.551468 0.549234 0.556331 0.539980 0.564610 0.555437 0.545950 0.548200 0.552308 0.529606 0.549234 0.552308 
15 0.555108 0.560376 0.571680 0.544699 0.546762 0.543774 0.553434 0.572932 0.546390 0.557672 0.495712 0.564314 0.544699 0.495712 
20 0.564068 0.558390 0.515865 0.555707 0.551600 0.568341 0.550522 0.566300 0.565647 0.569370 0.560891 0.556649 0.551600 0.560970 
25 0.573422 0.548461 0.564339 0.567619 0.557726 0.563577 0.560258 0.567381 0.560891 0.555707 0.551600 0.563993 0.563652 0.567277 
30 0.573173 0.550966 0.574451 0.558039 0.570411 0.564985 0.561179 0.561523 0.557888 0.567619 0.557726 0.572932 0.558822 0.555114 
35 0.544478 0.566867 0.555715 0.562728 0.563311 0.561030 0.561330 0.565167 0.564426 0.555707 0.551600 0.568916 0.545950 0.564218 
40 0.541548 0.565539 0.566213 0.563369 0.566606 0.554585 0.572641 0.567984 0.563620 0.567619 0.557726 0.540845 0.546390 0.563088 
45 0.566592 0.564004 0.565804 0.567989 0.556732 0.550805 0.562125 0.561165 0.565222 0.567965 0.569476 0.565223 0.566061 0.565738 

20 

5 0.565283 0.363251 0.541995 0.548481 0.544478 0.320704 0.371707 0.542078 0.540243 0.545061 0.566665 0.370807 0.363251 0.356290 
10 0.566995 0.563911 0.563773 0.538573 0.541548 0.565283 0.557324 0.564781 0.568916 0.545950 0.548200 0.539890 0.563911 0.552308 
15 0.553150 0.560303 0.543854 0.550189 0.566592 0.566995 0.538048 0.563620 0.540845 0.546390 0.557672 0.561338 0.560303 0.495712 
20 0.577234 0.574363 0.562025 0.567994 0.557043 0.553150 0.562591 0.563632 0.560931 0.557726 0.569370 0.560891 0.555707 0.551600 
25 0.566636 0.559101 0.576556 0.556947 0.577976 0.577234 0.565334 0.563088 0.555058 0.570411 0.560970 0.552690 0.567619 0.557726 
30 0.570524 0.562729 0.558064 0.555132 0.571274 0.566636 0.564784 0.566106 0.564288 0.563311 0.567277 0.567565 0.562645 0.561811 
35 0.557726 0.568325 0.561183 0.564895 0.565565 0.570524 0.563577 0.560254 0.568173 0.567381 0.569397 0.562377 0.560838 0.568655 
40 0.570411 0.561895 0.562087 0.561401 0.564445 0.562168 0.562979 0.566061 0.565738 0.565904 0.554766 0.552978 0.559959 0.566738 
45 0.563311 0.565168 0.567169 0.564904 0.567661 0.566470 0.564631 0.558822 0.561165 0.571474 0.566133 0.574284 0.568473 0.564858 

25 5 0.569055 0.549987 0.542078 0.540243 0.518792 0.531499 0.551330 0.543054 0.519956 0.551161 0.521659 0.530800 0.552980 0.545061 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 0.555707 0.561524 0.564781 0.568916 0.552118 0.546706 0.530690 0.561660 0.563652 0.554582 0.565886 0.552171 0.555437 0.545950 
15 0.567619 0.559325 0.563620 0.540845 0.555900 0.546293 0.554967 0.580582 0.558822 0.556494 0.558982 0.558228 0.561536 0.562858 
20 0.560254 0.552172 0.563632 0.560931 0.571677 0.563919 0.569055 0.561941 0.559261 0.564909 0.558963 0.567871 0.580582 0.558822 
25 0.552118 0.562645 0.563088 0.555058 0.562866 0.541581 0.555707 0.551600 0.563402 0.560254 0.529537 0.569370 0.560891 0.565834 
30 0.555900 0.568340 0.566106 0.564288 0.562058 0.564148 0.567619 0.557726 0.551884 0.551468 0.549234 0.556331 0.539980 0.560315 
35 0.571677 0.567798 0.560254 0.568173 0.565172 0.561547 0.560254 0.529537 0.569792 0.571680 0.544699 0.546762 0.543774 0.573150 
40 0.562866 0.568096 0.569829 0.534214 0.564522 0.562018 0.546762 0.572096 0.568818 0.555132 0.571274 0.566636 0.558390 0.515865 
45 0.562058 0.568098 0.561325 0.569911 0.568147 0.565195 0.565738 0.565221 0.565223 0.564895 0.565565 0.570524 0.548461 0.564339 

30 

5 0.561523 0.523496 0.535089 0.521659 0.530800 0.527016 0.515865 0.552980 0.545061 0.540243 0.518792 0.535603 0.537654 0.562058 
10 0.565167 0.552656 0.553147 0.561523 0.543810 0.520207 0.558982 0.555437 0.545950 0.555707 0.551600 0.561636 0.544785 0.565172 
15 0.567984 0.561536 0.562858 0.565167 0.551094 0.544458 0.558963 0.544785 0.560458 0.567619 0.557726 0.546390 0.557672 0.530796 
20 0.563380 0.580582 0.558822 0.567984 0.560888 0.551678 0.509376 0.558338 0.563402 0.551600 0.561536 0.565647 0.569370 0.537356 
25 0.560254 0.561941 0.559261 0.563380 0.541042 0.561377 0.556780 0.564678 0.551884 0.557726 0.580582 0.565886 0.552171 0.552059 
30 0.552980 0.560846 0.565834 0.560254 0.529537 0.565575 0.569187 0.548272 0.569792 0.570411 0.561941 0.558982 0.558228 0.560458 
35 0.555437 0.565040 0.560315 0.563233 0.564176 0.566282 0.544699 0.551468 0.552039 0.556331 0.539980 0.558963 0.567871 0.563402 
40 0.544785 0.572096 0.573150 0.564345 0.565000 0.568818 0.555707 0.571680 0.544699 0.546762 0.543774 0.509376 0.561636 0.551884 
45 0.557726 0.565221 0.565403 0.567965 0.569476 0.565223 0.569370 0.560891 0.566061 0.565738 0.564730 0.563235 0.560732 0.569792 

35 

5 0.561536 0.547613 0.559003 0.551196 0.535368 0.522871 0.565886 0.535603 0.537654 0.552980 0.545061 0.543054 0.519956 0.551161 
10 0.560376 0.540774 0.520609 0.524275 0.536603 0.560458 0.558982 0.561636 0.544785 0.555437 0.545950 0.561660 0.563652 0.554582 
15 0.551196 0.552105 0.572007 0.525988 0.556649 0.563402 0.558963 0.565886 0.552171 0.560732 0.558338 0.570411 0.560970 0.552690 
20 0.524275 0.567269 0.530796 0.564730 0.563993 0.551884 0.548200 0.558982 0.558228 0.556494 0.564678 0.563311 0.567277 0.567565 
25 0.525988 0.565124 0.537356 0.569001 0.572932 0.569792 0.557672 0.558963 0.567871 0.557726 0.546390 0.555707 0.551600 0.544699 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 0.564730 0.556780 0.552059 0.566278 0.566300 0.552039 0.557726 0.569370 0.560891 0.561536 0.565647 0.567619 0.557726 0.555707 
35 0.569001 0.569187 0.567526 0.565029 0.567381 0.569397 0.570411 0.560970 0.552690 0.560376 0.571680 0.544699 0.569370 0.560891 
40 0.572932 0.560996 0.565171 0.563763 0.565904 0.554766 0.564781 0.564171 0.565886 0.558390 0.515865 0.555707 0.558064 0.555132 
45 0.566300 0.566061 0.565738 0.565778 0.571474 0.566133 0.563620 0.575181 0.558982 0.548461 0.564339 0.567619 0.561183 0.564895 

40 

5 0.567381 0.370807 0.551330 0.570196 0.535603 0.537654 0.552980 0.545061 0.566282 0.543054 0.519956 0.551161 0.370807 0.551330 
10 0.565904 0.539890 0.530690 0.509376 0.561636 0.544785 0.555437 0.545950 0.551468 0.561660 0.563652 0.554582 0.539890 0.530690 
15 0.551600 0.561338 0.554967 0.563235 0.560732 0.558338 0.563402 0.558963 0.571680 0.544699 0.546762 0.543774 0.548200 0.558982 
20 0.557726 0.567204 0.569055 0.548150 0.556494 0.564678 0.551884 0.548200 0.567277 0.557726 0.569370 0.560891 0.555707 0.551600 
25 0.569370 0.575877 0.564041 0.561811 0.564909 0.548272 0.569370 0.560891 0.551600 0.570411 0.565886 0.552171 0.567619 0.557726 
30 0.543774 0.571908 0.568133 0.568655 0.566726 0.563573 0.551468 0.549234 0.557726 0.563311 0.558982 0.558228 0.567565 0.563919 
35 0.560891 0.572151 0.567362 0.566738 0.565099 0.556569 0.577976 0.577234 0.569370 0.567381 0.558963 0.567871 0.562377 0.541581 
40 0.552171 0.566037 0.565972 0.564858 0.549672 0.564689 0.571274 0.566636 0.572007 0.565904 0.566300 0.552039 0.552978 0.564148 
45 0.558228 0.557300 0.562345 0.565469 0.535820 0.567979 0.566061 0.565738 0.530796 0.566470 0.564631 0.558822 0.571680 0.544699 

 



 

 

 

 

 

141 

 

Appendix E 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - GRMSE 

Training value  

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 1.445223 1.346845 1.477029 1.500989 1.506603 1.441607 1.444452 1.434973 1.417198 1.410276 1.451130 1.427408 1.441443 1.446190 
10 1.444398 1.437884 1.504271 1.444792 1.447011 1.434398 1.438254 1.449961 1.455920 1.453478 1.441870 1.456707 1.442617 1.445433 
15 1.449710 1.421189 1.447091 1.446190 1.453353 1.447446 1.432057 1.444904 1.455499 1.446703 1.450587 1.450689 1.448218 1.446079 
20 1.451405 1.446549 1.450730 1.445433 1.443758 1.442117 1.448107 1.442758 1.449728 1.456207 1.458408 1.444398 1.446057 1.450623 
25 1.454615 1.450163 1.445129 1.446079 1.450689 1.448218 1.448131 1.445223 1.444904 1.455499 1.465102 1.451405 1.442048 1.448643 
30 1.445049 1.446016 1.444574 1.450623 1.444398 1.446057 1.441659 1.446797 1.439107 1.447177 1.376593 1.454615 1.446219 1.416202 
35 1.446219 1.449689 1.447058 1.448643 1.449710 1.448353 1.452288 1.452551 1.465315 1.452276 1.451202 1.445049 1.445329 1.451953 
40 1.445329 1.447670 1.445135 1.449889 1.451767 1.447773 1.451396 1.455573 1.452073 1.455246 1.452299 1.447235 1.450842 1.423138 
45 1.450842 1.446214 1.448380 1.445632 1.448259 1.448223 1.446851 1.452407 1.451439 1.447416 1.448338 1.446797 1.439107 1.443930 

10 

5 1.450324 1.480704 1.503867 1.444047 1.407287 1.445143 1.484453 1.427408 1.441443 1.416202 1.455573 1.452073 1.434973 1.417198 
10 1.447965 1.446797 1.439107 1.443930 1.453180 1.441149 1.444821 1.456707 1.442617 1.451953 1.452407 1.451439 1.449961 1.455920 
15 1.455499 1.452551 1.465315 1.442758 1.451405 1.442048 1.439429 1.383593 1.445927 1.423138 1.444904 1.455499 1.465102 1.445069 
20 1.446219 1.450610 1.446958 1.445223 1.454615 1.446219 1.445705 1.451202 1.451405 1.442048 1.442758 1.451405 1.442048 1.438922 
25 1.442048 1.450572 1.445401 1.443018 1.445049 1.445329 1.447284 1.452299 1.454615 1.446219 1.445223 1.454615 1.446219 1.432325 
30 1.446219 1.447523 1.448496 1.448217 1.447235 1.450842 1.450630 1.448338 1.445049 1.445329 1.444398 1.446057 1.447177 1.444189 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 1.449710 1.448231 1.445184 1.448927 1.445927 1.453886 1.448525 1.410276 1.451130 1.450842 1.449710 1.448353 1.452276 1.445223 
40 1.451767 1.450511 1.447191 1.446765 1.451277 1.452019 1.449784 1.453478 1.441870 1.451202 1.451767 1.447773 1.455246 1.443018 
45 1.448259 1.453390 1.449494 1.447344 1.450278 1.449827 1.449801 1.446703 1.450587 1.452299 1.448223 1.446851 1.447416 1.448217 

15 

5 1.458768 1.445604 1.427408 1.441443 1.433336 1.428106 1.425656 1.452678 1.374507 1.446797 1.439107 1.325635 1.444398 1.446057 
10 1.450086 1.448283 1.456707 1.442617 1.444976 1.437671 1.455385 1.450540 1.451953 1.452551 1.465315 1.444811 1.449710 1.448353 
15 1.451171 1.451336 1.436789 1.446726 1.438922 1.437589 1.457382 1.448353 1.423138 1.455573 1.452073 1.457887 1.451767 1.447773 
20 1.452724 1.447210 1.423283 1.446502 1.432325 1.450324 1.453195 1.447773 1.442758 1.444904 1.455499 1.465102 1.445069 1.448627 
25 1.454615 1.441303 1.452678 1.451250 1.444189 1.447965 1.447473 1.451130 1.445223 1.454615 1.446219 1.427408 1.441443 1.451032 
30 1.410276 1.439753 1.450540 1.452147 1.451026 1.452162 1.452204 1.441870 1.447177 1.451405 1.442048 1.456707 1.442617 1.450366 
35 1.453478 1.450609 1.446355 1.448648 1.449132 1.451909 1.449036 1.445900 1.452276 1.454615 1.446219 1.453759 1.433298 1.451130 
40 1.450587 1.449317 1.452218 1.453809 1.450444 1.448845 1.453756 1.446765 1.455246 1.445049 1.445329 1.453151 1.453478 1.441870 
45 1.451439 1.449248 1.450243 1.453409 1.450402 1.440949 1.451352 1.447344 1.447416 1.447235 1.450842 1.448921 1.446703 1.450587 

20 

5 1.457600 1.354567 1.466875 1.531898 1.454816 1.304435 1.365072 1.434973 1.417198 1.353026 1.446797 1.439107 1.416202 1.300325 
10 1.456202 1.451202 1.451583 1.443505 1.437337 1.444811 1.449985 1.449961 1.455920 1.444811 1.452551 1.465315 1.451953 1.444811 
15 1.448819 1.452299 1.443552 1.446079 1.451624 1.457887 1.428885 1.444904 1.455499 1.465102 1.445069 1.455691 1.457600 1.452011 
20 1.449955 1.448338 1.445248 1.448627 1.458768 1.445900 1.465681 1.427408 1.441443 1.451202 1.531898 1.442758 1.451405 1.442048 
25 1.452563 1.449414 1.455420 1.451032 1.450086 1.451954 1.449566 1.456707 1.442617 1.452299 1.451405 1.442048 1.454615 1.446219 
30 1.448201 1.448814 1.456642 1.450366 1.451171 1.451654 1.449933 1.447177 1.455920 1.448338 1.454615 1.446219 1.404695 1.451130 
35 1.447177 1.452946 1.456820 1.457370 1.452724 1.453378 1.453759 1.452276 1.446798 1.444398 1.445049 1.445329 1.453478 1.441870 
40 1.450587 1.448597 1.453808 1.451696 1.452428 1.451032 1.453151 1.455246 1.451859 1.449710 1.447235 1.450842 1.446703 1.450587 
45 1.456615 1.454364 1.450035 1.449111 1.451869 1.450642 1.448921 1.447416 1.444555 1.451767 1.447773 1.435574 1.452407 1.451439 

25 5 1.365482 1.514594 1.450577 1.434973 1.417198 1.440302 1.447235 1.444398 1.446057 1.451495 1.450756 1.422079 1.433432 1.543961 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 1.451202 1.451852 1.450271 1.449961 1.455920 1.446804 1.416202 1.449710 1.448353 1.442758 1.451405 1.442048 1.414062 1.456104 
15 1.457887 1.457740 1.448754 1.436855 1.446798 1.440860 1.451953 1.451767 1.447773 1.445223 1.454615 1.446219 1.450549 1.451108 
20 1.445900 1.459548 1.452563 1.449955 1.451859 1.456615 1.423138 1.455573 1.451405 1.442048 1.416202 1.450483 1.446797 1.439107 
25 1.451954 1.447244 1.448201 1.447279 1.444555 1.438921 1.354567 1.452407 1.454615 1.446219 1.451953 1.450187 1.452551 1.465315 
30 1.451654 1.450630 1.447177 1.455691 1.457600 1.452011 1.451202 1.457928 1.445049 1.445329 1.423138 1.448079 1.454520 1.452276 
35 1.455499 1.452063 1.452276 1.448223 1.456202 1.453762 1.452299 1.450756 1.447235 1.450842 1.410276 1.451130 1.456292 1.455246 
40 1.444398 1.452424 1.455246 1.435574 1.448819 1.443777 1.448338 1.454281 1.448627 1.458768 1.453478 1.441870 1.441443 1.446057 
45 1.449710 1.449364 1.447416 1.451898 1.451289 1.453657 1.444904 1.455499 1.465102 1.445069 1.446703 1.450587 1.442617 1.448353 

30 

5 1.445329 1.441992 1.432807 1.417612 1.424416 1.436258 1.448223 1.405633 1.434973 1.417198 1.446797 1.439107 1.448627 1.458768 
10 1.450842 1.457733 1.449728 1.456207 1.458408 1.432802 1.435574 1.451202 1.449961 1.455920 1.452551 1.465315 1.451032 1.450086 
15 1.444540 1.462197 1.444904 1.455499 1.465102 1.445069 1.451405 1.452299 1.435429 1.449710 1.448353 1.444398 1.446057 1.451993 
20 1.460901 1.450483 1.446322 1.450750 1.457759 1.455824 1.454615 1.448338 1.451202 1.455573 1.452073 1.449710 1.448353 1.450580 
25 1.455680 1.450187 1.452033 1.457928 1.438956 1.452605 1.445049 1.445329 1.457887 1.452407 1.451439 1.451767 1.447773 1.455361 
30 1.456292 1.448079 1.451495 1.450756 1.422079 1.456024 1.447235 1.450842 1.445900 1.451710 1.458011 1.410276 1.451130 1.447177 
35 1.423138 1.454286 1.454784 1.454281 1.447755 1.453825 1.416202 1.451993 1.451748 1.451366 1.450378 1.453478 1.441870 1.452276 
40 1.435407 1.451755 1.449175 1.451522 1.451758 1.450625 1.451953 1.451405 1.442048 1.458057 1.451827 1.446703 1.450587 1.455246 
45 1.453868 1.452023 1.451109 1.450394 1.450826 1.453669 1.423138 1.454615 1.446219 1.446797 1.439107 1.451405 1.442048 1.447416 

35 

5 1.455920 1.422284 1.449952 1.446631 1.433432 1.543961 1.448627 1.458768 1.451492 1.444904 1.455499 1.465102 1.445069 1.412802 
10 1.455499 1.437500 1.416202 1.420771 1.414062 1.456104 1.451032 1.450086 1.459245 1.453271 1.456899 1.450850 1.451202 1.445069 
15 1.441443 1.460848 1.451953 1.420980 1.450549 1.451108 1.457928 1.434973 1.417198 1.456207 1.458408 1.458408 1.452299 1.455824 
20 1.448338 1.451492 1.423138 1.451710 1.458011 1.448389 1.450756 1.449961 1.455920 1.455499 1.465102 1.465102 1.448338 1.455920 
25 1.445329 1.459245 1.435407 1.451366 1.450378 1.453463 1.455573 1.452073 1.444398 1.446057 1.455573 1.452073 1.416202 1.455499 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 1.450842 1.451147 1.453868 1.458057 1.451827 1.461227 1.452407 1.451439 1.449710 1.448353 1.452407 1.447177 1.451953 1.444398 
35 1.451993 1.449742 1.451682 1.450367 1.450850 1.452952 1.451993 1.451748 1.451767 1.447773 1.450587 1.452276 1.423138 1.449710 
40 1.451405 1.453233 1.454528 1.448529 1.452810 1.454844 1.451495 1.451405 1.442048 1.451405 1.442048 1.455246 1.410276 1.354567 
45 1.454615 1.452834 1.453271 1.456899 1.453825 1.453925 1.454784 1.454615 1.446219 1.454615 1.446219 1.447416 1.448353 1.451202 

40 

5 1.442048 1.362943 1.439142 1.446686 1.448232 1.438326 1.434973 1.417198 1.450850 1.445049 1.445329 1.458408 1.420980 1.452299 
10 1.446219 1.440488 1.428989 1.410276 1.451130 1.444540 1.449961 1.455920 1.458408 1.447235 1.450842 1.465102 1.451710 1.448338 
15 1.445329 1.455573 1.452073 1.453478 1.441870 1.460901 1.444904 1.455499 1.465102 1.434973 1.417198 1.455573 1.451366 1.449710 
20 1.450842 1.452407 1.451439 1.446703 1.450587 1.455680 1.434973 1.444398 1.446057 1.446797 1.439107 1.452407 1.458057 1.451767 
25 1.448353 1.451993 1.451748 1.456933 1.452335 1.446830 1.449961 1.449710 1.448353 1.452551 1.465315 1.448353 1.450367 1.442048 
30 1.447773 1.450580 1.450921 1.458677 1.456179 1.448594 1.447177 1.451767 1.453868 1.458057 1.451827 1.447773 1.451405 1.442048 
35 1.451130 1.455361 1.452210 1.450236 1.452866 1.454520 1.452276 1.416202 1.451682 1.450367 1.450850 1.450367 1.454615 1.446219 
40 1.441870 1.454017 1.456644 1.453010 1.439784 1.456292 1.455246 1.451953 1.454528 1.448529 1.452810 1.448529 1.448627 1.458768 
45 1.554320 1.450496 1.453195 1.458581 1.429291 1.454151 1.447416 1.423138 1.455499 1.465102 1.445069 1.456899 1.451032 1.450086 
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Appendix F 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - GRMSE 

Testing value 

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 1.566099 1.294195 1.544594 1.529413 1.495997 1.541293 1.546394 1.561984 1.549773 1.557989 1.575771 1.566615 1.566550 1.569992 
10 1.551189 1.543007 1.509823 1.557372 1.560442 1.546466 1.533969 1.536896 1.554719 1.549773 1.567745 1.551764 1.555651 1.542610 
15 1.541530 1.461775 1.567745 1.567745 1.561749 1.553781 1.471023 1.560260 1.567964 1.574660 1.560319 1.558991 1.558185 1.569370 
20 1.554372 1.532608 1.560319 1.560319 1.556293 1.543596 1.557366 1.504003 1.544319 1.502453 1.562503 1.559993 1.561984 1.546752 
25 1.558646 1.569380 1.562503 1.562503 1.566099 1.566550 1.550834 1.562086 1.581822 1.559742 1.556371 1.565133 1.567745 1.564259 
30 1.542823 1.560068 1.556371 1.556371 1.547313 1.555651 1.546936 1.568748 1.565068 1.549136 1.524510 1.561243 1.560319 1.551189 
35 1.552060 1.566667 1.561644 1.562168 1.561330 1.558185 1.571906 1.564491 1.571189 1.534634 1.530147 1.578564 1.562503 1.541530 
40 1.567022 1.566585 1.551292 1.572645 1.569485 1.557579 1.569656 1.561475 1.554447 1.553220 1.552060 1.564148 1.556371 1.554372 
45 1.558808 1.555771 1.556482 1.561644 1.562886 1.567007 1.554369 1.563563 1.555798 1.553188 1.567022 1.567745 1.567745 1.558646 

10 

5 1.558808 1.544156 1.532404 1.556592 1.503232 1.556533 1.542051 1.549136 1.524510 1.566615 1.552060 1.569992 1.567745 1.547313 
10 1.549773 1.547891 1.533414 1.536826 1.556625 1.533823 1.545576 1.534634 1.530147 1.551764 1.567022 1.542610 1.560319 1.561330 
15 1.574660 1.565133 1.534176 1.551200 1.562466 1.535032 1.532411 1.542823 1.555651 1.561984 1.558808 1.569370 1.562503 1.569485 
20 1.504003 1.561243 1.563913 1.542823 1.551189 1.558120 1.563035 1.552060 1.558185 1.536896 1.567745 1.546752 1.556371 1.554322 
25 1.562086 1.578564 1.553220 1.552060 1.541530 1.550525 1.556036 1.567022 1.557579 1.560260 1.566550 1.564259 1.558808 1.561984 
30 1.568748 1.564148 1.553188 1.567022 1.554372 1.547284 1.563175 1.558808 1.567745 1.544319 1.555651 1.546936 1.549773 1.536896 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 1.564491 1.558459 1.556071 1.558808 1.558646 1.561086 1.565561 1.571615 1.560319 1.581822 1.558185 1.571906 1.574660 1.560260 
40 1.562503 1.544044 1.554719 1.549773 1.557989 1.575771 1.572951 1.530423 1.562503 1.565068 1.560319 1.555170 1.562503 1.577256 
45 1.556371 1.577138 1.567964 1.574660 1.566591 1.575374 1.568192 1.559742 1.556371 1.571189 1.562503 1.556601 1.556371 1.553382 

15 

5 1.561984 1.549632 1.491363 1.533643 1.529212 1.514292 1.518664 1.542823 1.558808 1.569992 1.566615 1.509148 1.563401 1.571615 
10 1.536896 1.558455 1.541766 1.538348 1.549136 1.524510 1.561923 1.552060 1.549773 1.542610 1.551764 1.561213 1.564501 1.480423 
15 1.560260 1.555357 1.573014 1.531556 1.534634 1.530147 1.544747 1.567022 1.574660 1.569370 1.558991 1.544319 1.558808 1.566550 
20 1.549773 1.552298 1.489631 1.548214 1.541934 1.567745 1.540325 1.558808 1.504003 1.546752 1.559993 1.581822 1.563035 1.555651 
25 1.574660 1.537179 1.561496 1.566615 1.551277 1.560319 1.555170 1.567745 1.562086 1.564259 1.556371 1.565068 1.562179 1.558185 
30 1.544319 1.540959 1.577394 1.551764 1.571001 1.562503 1.556601 1.560319 1.568748 1.566550 1.550834 1.549773 1.557989 1.575771 
35 1.581822 1.565439 1.548197 1.558991 1.559897 1.556371 1.556827 1.562503 1.564491 1.555651 1.546936 1.567193 1.550248 1.571615 
40 1.565068 1.563363 1.564418 1.559993 1.565029 1.546506 1.574523 1.556371 1.573214 1.558185 1.571906 1.550081 1.583020 1.480423 
45 1.571189 1.560976 1.563780 1.567201 1.564491 1.540718 1.558060 1.567964 1.574660 1.566591 1.575374 1.547306 1.572354 1.559742 

20 

5 1.558185 1.301676 1.527605 1.537724 1.531247 1.257188 1.310897 1.559535 1.558808 1.527646 1.524876 1.504534 1.566615 1.326747 
10 1.567745 1.560822 1.560609 1.522468 1.526826 1.562951 1.550655 1.564230 1.549773 1.549136 1.524510 1.569992 1.551764 1.552060 
15 1.560319 1.555238 1.530340 1.539802 1.565000 1.565637 1.521623 1.555168 1.574660 1.534634 1.530147 1.542610 1.558991 1.567022 
20 1.562503 1.577256 1.557890 1.567193 1.550248 1.544319 1.558808 1.566550 1.550834 1.571615 1.544319 1.569370 1.559993 1.558808 
25 1.556371 1.553382 1.580744 1.550081 1.583020 1.581822 1.563035 1.555651 1.546936 1.503433 1.581822 1.546752 1.569992 1.542823 
30 1.542823 1.558986 1.551806 1.547306 1.572354 1.565068 1.562179 1.558185 1.571906 1.567745 1.565068 1.564259 1.542610 1.504003 
35 1.552060 1.567715 1.556605 1.562361 1.563398 1.571189 1.560306 1.561984 1.556199 1.560319 1.571189 1.555651 1.569370 1.562086 
40 1.567022 1.557698 1.557996 1.556933 1.561652 1.551806 1.559379 1.536896 1.547181 1.562503 1.581822 1.563035 1.546752 1.568748 
45 1.558808 1.562781 1.565900 1.562371 1.566673 1.564809 1.561940 1.560260 1.561406 1.556371 1.565068 1.562179 1.594353 1.564491 

25 5 1.561984 1.539833 1.527646 1.524876 1.493716 1.512063 1.549136 1.500245 1.571615 1.558808 1.572983 1.544319 1.558808 1.568748 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 1.536896 1.557115 1.562180 1.568635 1.542728 1.534575 1.534634 1.530147 1.474956 1.549773 1.559185 1.581822 1.549773 1.564491 
15 1.560260 1.553736 1.560358 1.525774 1.548538 1.533928 1.566550 1.550834 1.559742 1.574660 1.557952 1.565068 1.558808 1.556199 
20 1.569992 1.542823 1.560383 1.556199 1.572983 1.560834 1.555651 1.546936 1.562345 1.559165 1.555651 1.571189 1.549773 1.547181 
25 1.542610 1.558856 1.559535 1.547181 1.559185 1.526875 1.558185 1.571906 1.565180 1.552940 1.558185 1.569992 1.574660 1.561406 
30 1.569370 1.567729 1.564230 1.561406 1.557952 1.561187 1.561984 1.542823 1.562638 1.553615 1.561984 1.542610 1.504003 1.567471 
35 1.546752 1.566879 1.555168 1.567471 1.562781 1.557157 1.536896 1.552060 1.567715 1.556881 1.558185 1.569370 1.562086 1.555651 
40 1.564259 1.567356 1.570069 1.516011 1.561761 1.557870 1.560260 1.567022 1.557698 1.563401 1.561984 1.546752 1.568748 1.558185 
45 1.562781 1.567348 1.556813 1.570204 1.567425 1.562816 1.552060 1.558808 1.562781 1.564501 1.536896 1.564259 1.564491 1.561984 

30 

5 1.559535 1.500522 1.517274 1.497792 1.510990 1.505549 1.571615 1.549843 1.571906 1.571189 1.562763 1.560565 1.553265 1.561984 
10 1.564230 1.543546 1.544263 1.557112 1.530249 1.495709 1.542823 1.566435 1.562534 1.566211 1.562086 1.560937 1.432913 1.536896 
15 1.555168 1.557144 1.559165 1.562763 1.541206 1.531166 1.552060 1.567745 1.572983 1.555651 1.568748 1.574949 1.573486 1.560260 
20 1.560319 1.587174 1.552940 1.567160 1.556169 1.542057 1.567022 1.560319 1.559185 1.558185 1.571189 1.564259 1.544319 1.569992 
25 1.562503 1.557779 1.553615 1.559991 1.526064 1.556881 1.558808 1.562503 1.557952 1.561984 1.566550 1.550834 1.581822 1.542610 
30 1.556371 1.556056 1.563798 1.555145 1.509148 1.563401 1.571615 1.556371 1.549136 1.524510 1.555651 1.546936 1.565068 1.569370 
35 1.504003 1.562565 1.555244 1.559755 1.561213 1.564501 1.480423 1.549773 1.534634 1.530147 1.558185 1.571906 1.571189 1.546752 
40 1.562086 1.573634 1.575306 1.561490 1.562499 1.568469 1.559742 1.574660 1.542416 1.549136 1.524510 1.556371 1.569992 1.564259 
45 1.568748 1.562843 1.563126 1.567131 1.569504 1.562854 1.542823 1.571906 1.569992 1.534634 1.530147 1.544319 1.542610 1.553615 

35 

5 1.564491 1.535925 1.553265 1.541294 1.517675 1.500459 1.558808 1.559185 1.567745 1.572983 1.558185 1.571906 1.567745 1.567745 
10 1.547025 1.525646 1.496281 1.501543 1.519445 1.555457 1.549773 1.557952 1.560319 1.559185 1.561984 1.556199 1.560319 1.560319 
15 1.568825 1.542709 1.573486 1.504003 1.549601 1.560006 1.574660 1.567745 1.562503 1.557952 1.536896 1.547181 1.562503 1.562503 
20 1.560991 1.566033 1.510966 1.562086 1.560937 1.542416 1.549136 1.524510 1.556371 1.569992 1.571615 1.566615 1.569992 1.556371 
25 1.567378 1.562694 1.520602 1.568748 1.574949 1.569992 1.534634 1.530147 1.544319 1.542610 1.497732 1.551764 1.542610 1.555651 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 1.571615 1.549843 1.542612 1.564491 1.564516 1.542610 1.566550 1.550834 1.581822 1.569370 1.559742 1.558991 1.569370 1.558185 
35 1.491123 1.569077 1.566435 1.562534 1.566211 1.569370 1.555651 1.546936 1.565068 1.546752 1.567435 1.559993 1.546752 1.561984 
40 1.559742 1.556284 1.562763 1.560565 1.563902 1.546752 1.558185 1.571906 1.571189 1.564259 1.504003 1.550834 1.564259 1.476543 
45 1.493210 1.564147 1.563644 1.563712 1.572649 1.564259 1.502110 1.569992 1.544440 1.532101 1.562086 1.546936 1.560260 1.562503 

40 

5 1.504003 1.309892 1.541490 1.571615 1.518112 1.521043 1.572983 1.542610 1.566615 1.558808 1.568748 1.552060 1.541530 1.550834 
10 1.562086 1.524355 1.510831 1.480423 1.557263 1.531659 1.559185 1.569370 1.551764 1.549773 1.564491 1.567022 1.554372 1.546936 
15 1.568748 1.556808 1.547025 1.559742 1.555854 1.552204 1.557952 1.546752 1.558991 1.574660 1.560032 1.558808 1.558646 1.571906 
20 1.564491 1.565924 1.568825 1.536700 1.549355 1.561984 1.567745 1.564259 1.559993 1.566550 1.550834 1.549773 1.557989 1.569992 
25 1.554321 1.579618 1.560991 1.557541 1.562345 1.536896 1.560319 1.549136 1.524510 1.555651 1.546936 1.568748 1.560319 1.567435 
30 1.544319 1.573320 1.567378 1.568204 1.565180 1.560260 1.562503 1.534634 1.530147 1.542823 1.571906 1.564491 1.562503 1.504003 
35 1.581822 1.573709 1.566170 1.565193 1.562638 1.549498 1.556371 1.543552 1.555651 1.552060 1.549773 1.557952 1.556371 1.562086 
40 1.565068 1.564101 1.564005 1.562262 1.538973 1.562004 1.560565 1.563902 1.558185 1.567022 1.574660 1.567745 1.559742 1.574660 
45 1.571189 1.550588 1.558366 1.563224 1.518317 1.567146 1.563712 1.572649 1.561984 1.558808 1.549136 1.524510 1.542823 1.571906 
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Appendix G 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - RMSE 

Training value 

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 0.621849 0.762099 0.649943 0.601084 0.322232 0.761779 0.756135 0.736474 0.761514 0.339530 0.602617 0.319408 0.762255 0.766538 

10 0.755175 0.655556 0.763529 0.727068 0.656363 0.757960 0.712695 0.703071 0.678108 0.622531 0.761030 0.722989 0.752929 0.746775 

15 0.701901 0.699004 0.694056 0.654595 0.643149 0.685932 0.628105 0.777896 0.714377 0.761985 0.707293 0.738298 0.675278 0.748157 

20 0.701901 0.716917 0.618915 0.699732 0.616656 0.671680 0.693679 0.700626 0.665571 0.775970 0.760270 0.693491 0.733879 0.737100 

25 0.704822 0.659350 0.695823 0.678612 0.637604 0.675647 0.654111 0.736921 0.754066 0.764418 0.754066 0.687683 0.750911 0.751044 

30 0.739789 0.693320 0.663364 0.651883 0.669010 0.687683 0.707293 0.750911 0.797605 0.763470 0.755823 0.740089 0.749426 0.746581 

35 0.680414 0.728295 0.706282 0.631261 0.662381 0.777775 0.750449 0.716858 0.743508 0.734228 0.764020 0.748171 0.761985 0.723298 

40 0.703717 0.753300 0.717546 0.718109 0.735626 0.737629 0.748802 0.746581 0.745776 0.734341 0.740089 0.762255 0.775970 0.706282 

45 0.668707 0.730528 0.687835 0.674892 0.721213 0.733503 0.742860 0.723298 0.742905 0.733577 0.722989 0.752929 0.764418 0.717546 

10 

5 0.303667 0.761041 0.763557 0.488978 0.492325 0.761514 0.322814 0.602617 0.321025 0.777896 0.750449 0.716858 0.743508 0.734228 

10 0.628105 0.701594 0.760511 0.706288 0.753593 0.678108 0.622531 0.761030 0.693679 0.700626 0.748802 0.746581 0.745776 0.734341 

15 0.693679 0.706635 0.711331 0.659283 0.627584 0.714377 0.671680 0.699004 0.654111 0.736921 0.742860 0.723298 0.742905 0.733577 

20 0.654111 0.640685 0.757981 0.660057 0.678953 0.665571 0.675647 0.716917 0.707293 0.750911 0.757960 0.712695 0.706282 0.631261 

25 0.707293 0.738298 0.675278 0.700760 0.657789 0.754066 0.687683 0.659350 0.695823 0.749426 0.720756 0.766538 0.717546 0.718109 

30 0.760270 0.693491 0.733879 0.729471 0.746141 0.797605 0.777775 0.693320 0.663364 0.761985 0.720756 0.746775 0.740089 0.762255 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 0.740598 0.725060 0.725466 0.668557 0.661120 0.728295 0.706282 0.631261 0.645380 0.775970 0.735342 0.748157 0.722989 0.752929 

40 0.761584 0.736872 0.720481 0.749989 0.677001 0.753300 0.717546 0.755823 0.628105 0.764418 0.725466 0.737100 0.737629 0.742906 

45 0.759970 0.746195 0.745656 0.733853 0.736863 0.777775 0.693320 0.764020 0.748171 0.763470 0.720481 0.751044 0.733503 0.701899 

15 

5 0.322547 0.755417 0.750031 0.318456 0.675262 0.736474 0.761514 0.322814 0.602617 0.761779 0.756135 0.736474 0.766538 0.290394 

10 0.696928 0.721073 0.729681 0.633985 0.770636 0.703071 0.678108 0.622531 0.761030 0.757960 0.712695 0.703071 0.746775 0.775970 

15 0.711040 0.761720 0.720756 0.577605 0.671680 0.716858 0.728295 0.706282 0.631261 0.699004 0.694056 0.714377 0.748157 0.764418 

20 0.684826 0.786814 0.720756 0.712896 0.675647 0.746581 0.753300 0.717546 0.718109 0.716917 0.618915 0.665571 0.737100 0.763470 

25 0.764401 0.743518 0.735342 0.705336 0.687683 0.723298 0.777896 0.628105 0.671680 0.659350 0.695823 0.754066 0.755823 0.761895 

30 0.719133 0.748665 0.755971 0.738210 0.777775 0.706282 0.700626 0.693679 0.675647 0.693320 0.663364 0.797605 0.764020 0.748171 

35 0.749783 0.741873 0.737537 0.761761 0.723271 0.717546 0.736921 0.750449 0.716858 0.743508 0.734228 0.740089 0.762255 0.777775 

40 0.754241 0.762835 0.737629 0.742906 0.677495 0.756135 0.750911 0.748802 0.746581 0.745776 0.734341 0.722989 0.752929 0.706282 

45 0.721649 0.750774 0.733503 0.701899 0.722917 0.744392 0.749426 0.742860 0.723298 0.742905 0.733577 0.730331 0.740720 0.717546 

20 

5 0.755125 0.761514 0.322814 0.602617 0.617119 0.777896 0.714377 0.750449 0.716858 0.743508 0.734228 0.743508 0.321930 0.734228 

10 0.695285 0.678108 0.622531 0.761030 0.681942 0.700626 0.665571 0.748802 0.746581 0.745776 0.734341 0.745776 0.734341 0.734341 

15 0.743129 0.711327 0.764488 0.746604 0.750473 0.736921 0.754066 0.742860 0.723298 0.742905 0.733577 0.699004 0.694056 0.733577 

20 0.748858 0.687405 0.700996 0.694896 0.657791 0.750911 0.797605 0.728295 0.706282 0.631261 0.675647 0.716917 0.618915 0.707293 

25 0.730331 0.740720 0.751165 0.651071 0.751143 0.749426 0.766538 0.753300 0.717546 0.718109 0.687683 0.659350 0.695823 0.712484 

30 0.722491 0.738738 0.763710 0.761518 0.718049 0.761985 0.746775 0.761779 0.756135 0.736474 0.777775 0.693320 0.663364 0.706282 

35 0.734710 0.746364 0.754324 0.729984 0.620632 0.775970 0.748157 0.757960 0.712695 0.703071 0.765479 0.740568 0.673217 0.764274 

40 0.744706 0.753857 0.732753 0.683587 0.725072 0.764418 0.737100 0.737629 0.742906 0.740089 0.762255 0.755823 0.734228 0.754135 

45 0.755147 0.759595 0.737498 0.725444 0.725917 0.763470 0.751044 0.733503 0.701899 0.722989 0.752929 0.764020 0.748171 0.723198 

25 5 0.761779 0.756135 0.736474 0.322181 0.673217 0.628105 0.751165 0.312548 0.673217 0.665432 0.654321 0.761514 0.322814 0.602617 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 0.757960 0.712695 0.703071 0.676706 0.702495 0.693679 0.763710 0.676706 0.702495 0.671680 0.699004 0.678108 0.622531 0.761030 

15 0.726048 0.777896 0.765479 0.740568 0.797990 0.654111 0.754324 0.766538 0.761985 0.675647 0.716917 0.618915 0.763710 0.761518 

20 0.725912 0.700626 0.764274 0.776312 0.744186 0.707293 0.736474 0.746775 0.775970 0.687683 0.659350 0.695823 0.754324 0.729984 

25 0.725912 0.736921 0.754135 0.752916 0.731470 0.714377 0.703071 0.748157 0.764418 0.777775 0.693320 0.663364 0.732753 0.683587 

30 0.752188 0.750911 0.723198 0.684439 0.762786 0.665571 0.734710 0.737100 0.763470 0.728295 0.706282 0.631261 0.740089 0.762255 

35 0.745577 0.749426 0.723547 0.748018 0.747697 0.754066 0.744706 0.751044 0.750449 0.716858 0.743508 0.734228 0.722989 0.752929 

40 0.748392 0.740866 0.763235 0.727755 0.711229 0.797605 0.737629 0.742906 0.748802 0.746581 0.745776 0.734341 0.743508 0.734228 

45 0.746051 0.756719 0.733189 0.743517 0.744420 0.754432 0.733503 0.701899 0.742860 0.723298 0.742905 0.733577 0.745776 0.734341 

30 

5 0.714377 0.764630 0.322465 0.656544 0.686448 0.766538 0.755823 0.322399 0.777896 0.761514 0.321395 0.602617 0.706282 0.631261 

10 0.665571 0.684873 0.708437 0.744368 0.623470 0.746775 0.764020 0.748171 0.700626 0.678108 0.622531 0.761030 0.717546 0.718109 

15 0.754066 0.722867 0.772105 0.717105 0.746852 0.748157 0.718119 0.754012 0.736921 0.654111 0.737629 0.742906 0.699004 0.694056 

20 0.797605 0.732615 0.755648 0.712967 0.739903 0.737100 0.764940 0.763534 0.750911 0.707293 0.733503 0.701899 0.716917 0.618915 

25 0.774338 0.750449 0.716858 0.743508 0.734228 0.751044 0.753882 0.761677 0.749426 0.761779 0.756135 0.736474 0.659350 0.695823 

30 0.740789 0.748802 0.746581 0.745776 0.734341 0.702240 0.743848 0.767212 0.761985 0.757960 0.712695 0.703071 0.693320 0.671680 

35 0.745847 0.742860 0.723298 0.742905 0.733577 0.762423 0.749466 0.761985 0.775970 0.722989 0.750449 0.716858 0.743508 0.734228 

40 0.748566 0.715951 0.756389 0.719955 0.755463 0.740089 0.762255 0.775970 0.764418 0.743508 0.748802 0.746581 0.745776 0.734341 

45 0.749734 0.744072 0.761794 0.753657 0.753158 0.722989 0.752929 0.764418 0.763470 0.745776 0.742860 0.723298 0.742905 0.733577 

35 

5 0.747326 0.762858 0.313086 0.640688 0.400351 0.718119 0.754012 0.710415 0.740089 0.762255 0.761514 0.322814 0.602617 0.774338 

10 0.763522 0.652732 0.702240 0.743848 0.718530 0.764940 0.763534 0.744373 0.722989 0.752929 0.678108 0.622531 0.761030 0.740789 

15 0.767212 0.766538 0.762423 0.749466 0.761056 0.742860 0.723298 0.671680 0.714377 0.766538 0.628105 0.777896 0.761985 0.745847 

20 0.761985 0.746775 0.753927 0.760929 0.752819 0.715951 0.756389 0.675647 0.665571 0.746775 0.693679 0.700626 0.775970 0.742860 

25 0.775970 0.748157 0.749942 0.661494 0.763653 0.744072 0.761794 0.687683 0.754066 0.748157 0.654111 0.736921 0.764418 0.757960 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 0.764418 0.737100 0.740089 0.762255 0.731137 0.764020 0.761514 0.777775 0.797605 0.737100 0.707293 0.750911 0.763470 0.720756 

35 0.763470 0.751044 0.722989 0.752929 0.735963 0.734228 0.678108 0.737629 0.742906 0.751044 0.712484 0.749426 0.734250 0.720756 

40 0.751307 0.756845 0.735732 0.744692 0.742435 0.734341 0.654111 0.733503 0.701899 0.728295 0.706282 0.631261 0.755823 0.322399 

45 0.757414 0.764305 0.762182 0.760949 0.705330 0.733577 0.757960 0.712695 0.703071 0.753300 0.717546 0.718109 0.764020 0.748171 

40 

5 0.755823 0.322399 0.768660 0.722412 0.325747 0.742860 0.737100 0.766538 0.740089 0.762255 0.731137 0.764020 0.753882 0.761677 

10 0.764020 0.748171 0.735793 0.718648 0.618797 0.757960 0.761985 0.746775 0.728295 0.706282 0.631261 0.711327 0.756211 0.734856 

15 0.759987 0.718119 0.754012 0.710415 0.706994 0.720756 0.775970 0.748157 0.753300 0.717546 0.718109 0.687405 0.750914 0.741141 

20 0.774954 0.764940 0.763534 0.744373 0.746163 0.720756 0.764418 0.737100 0.671680 0.714377 0.755823 0.322399 0.757787 0.764019 

25 0.742716 0.753882 0.761677 0.739303 0.595732 0.755823 0.763470 0.751044 0.675647 0.665571 0.764020 0.748171 0.693679 0.777896 

30 0.756474 0.756211 0.734856 0.702923 0.764447 0.764020 0.737629 0.742906 0.687683 0.754066 0.740089 0.762255 0.654111 0.700626 

35 0.747396 0.750914 0.741141 0.758201 0.763139 0.700626 0.764274 0.701899 0.777775 0.797605 0.722989 0.752929 0.707293 0.736921 

40 0.759631 0.757787 0.764019 0.736438 0.744943 0.736921 0.754135 0.761514 0.322814 0.602617 0.761779 0.756135 0.736474 0.750911 

45 0.750198 0.760208 0.762853 0.738613 0.754243 0.750911 0.723198 0.678108 0.622531 0.761030 0.757960 0.712695 0.703071 0.749426 
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Appendix H 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - RMSE 

Testing value 

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 0.288038 0.288793 0.289039 0.286974 0.322232 0.289096 0.286921 0.288998 0.322814 0.289017 0.289367 0.288926 0.289542 0.297504 
10 0.288494 0.288579 0.288725 0.288264 0.285723 0.293982 0.287903 0.289174 0.288744 0.289134 0.286092 0.289007 0.288979 0.288791 
15 0.288985 0.288494 0.288753 0.286024 0.296632 0.288908 0.288677 0.289160 0.288815 0.288307 0.289023 0.288842 0.288307 0.289023 
20 0.288985 0.288739 0.288625 0.289257 0.286198 0.288846 0.288914 0.288787 0.288917 0.289263 0.289183 0.300569 0.289263 0.289183 
25 0.288749 0.288783 0.288991 0.289258 0.285562 0.289023 0.288846 0.288793 0.288909 0.289005 0.289339 0.288838 0.289127 0.286894 
30 0.289050 0.288994 0.289006 0.287200 0.289983 0.289309 0.289023 0.322547 0.289256 0.288817 0.261945 0.932413 0.289086 0.289103 
35 0.288467 0.288707 0.289069 0.286068 0.289455 0.288754 0.289309 0.285417 0.289348 0.289256 0.288817 0.287454 0.288913 0.289121 
40 0.288680 0.288784 0.288667 0.288861 0.289313 0.288842 0.288754 0.289017 0.289367 0.288756 0.288778 0.288823 0.289096 0.286921 
45 0.289083 0.288954 0.288858 0.287798 0.287951 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 0.288784 0.293982 0.287903 

10 

5 0.322953 0.288882 0.288758 0.307061 0.303513 0.322547 0.289256 0.288817 0.262842 0.289005 0.289339 0.288838 0.322181 0.769422 
10 0.288095 0.288430 0.288914 0.288615 0.289237 0.288998 0.322814 0.288926 0.289542 0.297504 0.288919 0.285417 0.289348 0.288914 
15 0.288932 0.288785 0.288846 0.298275 0.285338 0.289174 0.288744 0.289007 0.288979 0.288791 0.288556 0.289017 0.289367 0.288846 
20 0.289161 0.288668 0.289023 0.286791 0.288049 0.289160 0.288815 0.288739 0.288625 0.289257 0.289033 0.289134 0.286092 0.289023 
25 0.289029 0.288835 0.289309 0.287963 0.284167 0.288787 0.288917 0.288783 0.288991 0.289258 0.289067 0.288307 0.289023 0.289309 
30 0.288886 0.288852 0.288754 0.289870 0.289143 0.288793 0.288909 0.289096 0.286921 0.288710 0.288940 0.289263 0.289183 0.288754 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 0.288745 0.289282 0.288842 0.287698 0.287661 0.288787 0.289096 0.293982 0.287903 0.288778 0.288840 0.289127 0.286894 0.288842 
40 0.288787 0.289018 0.288835 0.289034 0.286267 0.288793 0.293982 0.288908 0.288677 0.289214 0.288800 0.289086 0.289103 0.288459 
45 0.288779 0.288715 0.288726 0.289086 0.289008 0.288838 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 0.289121 0.287451 

15 

5 0.322547 0.289256 0.288817 0.262842 0.286629 0.288739 0.288625 0.289257 0.289005 0.289339 0.288838 0.322181 0.289143 0.288793 
10 0.288754 0.288756 0.288778 0.300857 0.288514 0.288783 0.288991 0.289258 0.322547 0.289256 0.288817 0.313052 0.287661 0.288787 
15 0.287707 0.288923 0.288823 0.285762 0.286841 0.289160 0.288998 0.322814 0.288914 0.289096 0.286921 0.288926 0.289542 0.297504 
20 0.288710 0.288940 0.288823 0.289096 0.286921 0.288787 0.289174 0.288744 0.288846 0.293982 0.287903 0.289007 0.288979 0.288791 
25 0.288778 0.288840 0.288784 0.293982 0.287903 0.288793 0.289160 0.288815 0.289023 0.288908 0.288677 0.288745 0.289282 0.288842 
30 0.289214 0.288800 0.288852 0.288908 0.288677 0.289012 0.288787 0.288917 0.289309 0.285417 0.289348 0.288787 0.289018 0.288835 
35 0.288903 0.288793 0.288895 0.288963 0.289418 0.288839 0.288793 0.288909 0.288754 0.289017 0.289367 0.289062 0.289033 0.288864 
40 0.288808 0.288841 0.288860 0.288737 0.287293 0.288919 0.289040 0.296315 0.288842 0.289134 0.286092 0.289062 0.289067 0.289007 
45 0.288882 0.288831 0.289539 0.289463 0.289112 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 0.288864 0.288764 0.288883 

20 

5 0.288771 0.288998 0.322814 0.305463 0.302876 0.289174 0.288739 0.288625 0.289257 0.288998 0.322814 0.288733 0.288733 0.289048 
10 0.290313 0.289174 0.288744 0.289037 0.289357 0.289160 0.288783 0.288991 0.289258 0.289174 0.288744 0.288864 0.288864 0.288213 
15 0.289137 0.289160 0.288815 0.288780 0.289747 0.288787 0.288914 0.289096 0.286921 0.289160 0.288815 0.289007 0.289007 0.288692 
20 0.289005 0.288787 0.288917 0.287300 0.285010 0.288793 0.288846 0.293982 0.287903 0.288787 0.288917 0.288883 0.289012 0.288835 
25 0.289268 0.288793 0.288909 0.285417 0.289348 0.289012 0.289023 0.288908 0.288677 0.288793 0.288909 0.288952 0.288839 0.288954 
30 0.288989 0.289012 0.288835 0.289017 0.289367 0.288840 0.289309 0.289005 0.289339 0.288838 0.322181 0.288942 0.288931 0.288873 
35 0.288922 0.288839 0.288954 0.289134 0.286092 0.288800 0.288754 0.288926 0.289542 0.297504 0.286841 0.289160 0.288998 0.322814 
40 0.288866 0.288862 0.288903 0.285602 0.289114 0.288793 0.288842 0.289007 0.288979 0.288791 0.286921 0.288787 0.289174 0.288744 
45 0.289045 0.288865 0.289257 0.289298 0.289416 0.288841 0.322547 0.289256 0.288817 0.254032 0.287903 0.288793 0.289160 0.288815 

25 5 0.289005 0.289339 0.288838 0.322181 0.293043 0.284321 0.286921 0.289747 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 0.288917 0.288919 0.289040 0.296315 0.286331 0.293982 0.287903 0.285010 0.289217 0.289132 0.288890 0.292332 0.288688 0.288619 
15 0.288832 0.288556 0.288733 0.289048 0.288134 0.288908 0.288677 0.289348 0.288914 0.288979 0.288791 0.288886 0.288750 0.288307 
20 0.289062 0.289033 0.288864 0.288213 0.290233 0.289137 0.288739 0.288625 0.288846 0.289208 0.288925 0.289566 0.288827 0.289263 
25 0.289062 0.289067 0.289007 0.288692 0.289305 0.289005 0.288783 0.288991 0.289023 0.285417 0.289348 0.288417 0.289156 0.290398 
30 0.288864 0.288764 0.288883 0.287496 0.289047 0.289268 0.288998 0.322814 0.289309 0.289017 0.289367 0.289132 0.288890 0.292332 
35 0.289108 0.288983 0.288952 0.290264 0.288984 0.289007 0.289174 0.288744 0.288754 0.289134 0.286092 0.289217 0.289132 0.288890 
40 0.288942 0.288931 0.288873 0.289145 0.289007 0.289012 0.289160 0.288815 0.288842 0.287321 0.289566 0.288587 0.288926 0.289542 
45 0.289003 0.288904 0.289505 0.289204 0.289032 0.288839 0.288787 0.288917 0.254210 0.288979 0.322547 0.289256 0.288817 0.262842 

30 

5 0.288841 0.288875 0.322465 0.285970 0.287657 0.289096 0.288793 0.288909 0.288435 0.285417 0.289348 0.293982 0.287903 0.288787 
10 0.289001 0.288417 0.289156 0.290398 0.301502 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 0.288908 0.288677 0.288793 
15 0.289217 0.289132 0.288890 0.292332 0.289927 0.288432 0.285432 0.288925 0.294313 0.289134 0.286092 0.288846 0.288978 0.289377 
20 0.288587 0.288926 0.289542 0.297504 0.288749 0.288998 0.322814 0.288867 0.288739 0.288625 0.289257 0.289023 0.289096 0.286921 
25 0.288758 0.289007 0.288979 0.288791 0.288886 0.289174 0.288744 0.288937 0.288783 0.288991 0.289258 0.289309 0.293982 0.287903 
30 0.289094 0.289063 0.289208 0.288925 0.289566 0.289160 0.288815 0.288983 0.312696 0.288965 0.288911 0.288754 0.288908 0.288677 
35 0.288926 0.289019 0.289118 0.289161 0.289342 0.288787 0.288917 0.288993 0.322547 0.289256 0.288817 0.253433 0.288543 0.211321 
40 0.288976 0.288978 0.289377 0.288566 0.289167 0.288793 0.288909 0.289681 0.322399 0.288916 0.288841 0.288875 0.288815 0.289023 
45 0.289017 0.289067 0.288980 0.289019 0.289129 0.289005 0.289339 0.288838 0.322181 0.282134 0.289001 0.288417 0.288917 0.289309 

35 

5 0.288931 0.289037 0.322881 0.301530 0.315615 0.288926 0.289542 0.297504 0.288839 0.289275 0.289217 0.289132 0.289263 0.289183 
10 0.288973 0.288688 0.288619 0.289191 0.294883 0.289007 0.288979 0.288791 0.322547 0.289256 0.288817 0.244938 0.287542 0.300451 
15 0.288684 0.288750 0.288307 0.289023 0.289332 0.288917 0.289309 0.285417 0.289348 0.289005 0.289339 0.288838 0.322181 0.265425 
20 0.288925 0.288827 0.289263 0.289183 0.289292 0.288909 0.288754 0.289017 0.289367 0.289023 0.288625 0.289257 0.288998 0.322814 
25 0.288867 0.288931 0.289127 0.286894 0.288954 0.296315 0.288842 0.289134 0.286092 0.289309 0.288991 0.289258 0.289174 0.288744 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 0.288937 0.288976 0.289086 0.289103 0.289138 0.293230 0.300569 0.289275 0.293230 0.288754 0.289096 0.286921 0.289160 0.288815 
35 0.288983 0.289079 0.288913 0.289121 0.288863 0.289161 0.289342 0.289087 0.293102 0.288842 0.293982 0.287903 0.288787 0.288917 
40 0.288993 0.289030 0.289541 0.289075 0.289710 0.288566 0.289167 0.289002 0.289414 0.288760 0.288908 0.288677 0.288793 0.288909 
45 0.288948 0.288942 0.288927 0.288858 0.286761 0.289019 0.289129 0.289008 0.289653 0.289096 0.286921 0.289160 0.288815 0.289007 

40 

5 0.289681 0.322399 0.288916 0.291887 0.319410 0.288307 0.289023 0.289309 0.285417 0.289348 0.288998 0.322814 0.289256 0.288817 
10 0.288977 0.288839 0.289275 0.293230 0.300569 0.289263 0.289183 0.288754 0.289017 0.289367 0.289174 0.288744 0.288756 0.288778 
15 0.289015 0.289070 0.289087 0.293102 0.287672 0.289127 0.286894 0.289377 0.288566 0.289167 0.289160 0.288815 0.288914 0.289309 
20 0.288887 0.288948 0.289002 0.289414 0.289196 0.289086 0.289103 0.289005 0.289339 0.288838 0.322181 0.288917 0.288846 0.288754 
25 0.288950 0.288913 0.289008 0.289653 0.274904 0.288307 0.289023 0.322547 0.289256 0.289096 0.288793 0.288909 0.289023 0.262842 
30 0.289062 0.289036 0.289258 0.289740 0.289001 0.289263 0.289183 0.285417 0.289348 0.293982 0.287903 0.288625 0.289309 0.288875 
35 0.289059 0.289090 0.289000 0.289363 0.289178 0.289127 0.286894 0.289017 0.289367 0.288908 0.288677 0.288991 0.288754 0.276743 
40 0.289003 0.289066 0.288978 0.288977 0.289136 0.289086 0.289103 0.289134 0.286092 0.288926 0.289542 0.297504 0.288842 0.288975 
45 0.289047 0.288911 0.289051 0.289224 0.289064 0.288913 0.289121 0.288946 0.279654 0.289007 0.288979 0.288791 0.265741 0.294607 
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Appendix I 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - GRMSE 

Training value 

Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 1.277809 1.278781 1.279100 1.276531 1.341334 1.278921 1.279183 1.278509 1.278803 1.274975 1.276296 1.290338 1.277295 1.277873 
10 1.278392 1.278515 1.278691 1.278122 1.274851 1.278981 1.278916 1.278111 1.277456 1.279165 1.276380 1.275511 1.279253 1.277824 
15 1.279033 1.278395 1.278728 1.275243 1.290338 1.278995 1.279020 1.279347 1.278756 1.285775 1.277639 1.274671 1.261456 1.272884 
20 1.278603 1.278711 1.278568 1.279411 1.275511 1.278727 1.279093 1.279168 1.279432 1.275573 1.277824 1.280365 1.278997 1.279232 
25 1.278724 1.278769 1.279037 1.279430 1.274671 1.278931 1.279036 1.279108 1.278892 1.279162 1.272884 1.279661 1.279227 1.277377 
30 1.279115 1.279042 1.279057 1.276751 1.280365 1.277873 1.278302 1.278931 1.302920 1.298616 1.279232 1.279460 ###### 1.275554 
35 1.278359 1.278668 1.279148 1.275341 1.279661 1.278955 1.278763 1.278842 1.279076 1.279532 1.277377 1.278911 1.278913 1.279072 
40 1.278634 1.278769 1.278618 1.278878 1.279460 1.277824 1.290338 1.278503 1.278743 1.280012 1.275554 1.278801 1.278443 1.278672 
45 1.279170 1.278989 1.278865 1.277512 1.277709 1.272884 1.275511 1.274523 1.278120 1.278815 1.279742 1.279643 1.273453 1.277543 

10 

5 1.207665 1.278888 1.278727 1.307155 1.303475 1.278815 1.279742 1.279643 1.276456 1.279183 1.278509 1.278727 1.277824 1.290338 
10 1.277873 1.278302 1.278931 1.278557 1.279360 1.290338 1.279115 1.279042 1.279057 1.278916 1.278111 1.278931 1.272884 1.275511 
15 1.278955 1.278763 1.278842 1.292172 1.274445 1.275511 1.278359 1.278668 1.279148 1.279020 1.279347 1.277873 1.278302 1.278931 
20 1.279258 1.278612 1.279072 1.276234 1.277824 1.274671 1.207665 1.278888 1.278727 1.279093 1.279168 1.278955 1.278763 1.278842 
25 1.279080 1.278827 1.279445 1.277714 1.272884 1.280365 1.277873 1.278302 1.278931 1.279036 1.279108 1.278892 1.279162 1.277295 
30 1.278893 1.278852 1.278725 1.280186 1.279232 1.279661 1.302920 1.298616 1.302920 1.298616 1.278911 1.278913 1.279072 1.279253 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 1.278710 1.279413 1.278837 1.277419 1.277377 1.279460 1.279076 1.279532 1.279076 1.279532 1.277113 1.279079 1.278672 1.261456 
40 1.278764 1.279066 1.278828 1.279090 1.275554 1.278435 1.278743 1.280012 1.278743 1.280012 1.280673 1.279001 1.294532 1.278997 
45 1.278754 1.278671 1.278686 1.279159 1.279061 1.278634 1.278769 1.278618 1.278878 1.279460 1.279209 1.279032 1.275630 1.279227 

15 

5 1.222416 1.279373 1.278796 1.248533 1.276019 1.302920 1.298616 1.302920 1.298616 1.278911 1.278913 1.279072 1.277113 1.279079 
10 1.278715 1.278717 1.278752 1.296143 1.278403 1.279076 1.279532 1.279076 1.279532 1.278801 1.278443 1.278672 1.280673 1.279001 
15 1.278735 1.278934 1.278803 1.274975 1.276296 1.278743 1.280012 1.278743 1.280012 1.278945 1.278727 1.277295 1.279209 1.279032 
20 1.278658 1.278957 1.277456 1.279165 1.276380 1.277824 1.290338 1.279108 1.278892 1.279162 1.278931 1.279253 1.278509 1.279183 
25 1.278745 1.278825 1.278756 1.285775 1.277639 1.272884 1.275511 1.279115 1.279042 1.279057 1.277377 1.261456 1.278111 1.278916 
30 1.279316 1.278774 1.278842 1.278917 1.278615 1.279232 1.274671 1.278359 1.278668 1.279148 1.275554 1.278997 1.279347 1.279020 
35 1.278908 1.278765 1.278898 1.278986 1.279604 1.277377 1.280365 1.235035 1.278888 1.278727 1.279061 1.279227 1.279168 1.279093 
40 1.278785 1.278826 1.278851 1.278693 1.276861 1.275554 1.279661 1.277873 1.278302 1.278931 1.276019 1.277824 1.290338 1.279036 
45 1.278881 1.278815 1.279742 1.279643 1.279196 1.278509 1.279460 1.242945 1.276053 1.277824 1.290338 1.272884 1.275511 1.285353 

20 

5 1.277356 1.279024 1.342153 1.302920 1.298616 1.278111 1.277873 1.278302 1.278931 1.272884 1.275511 1.278815 1.279742 1.279643 
10 1.280909 1.279264 1.278696 1.279076 1.279532 1.279347 1.278955 1.278763 1.278842 1.290338 1.235336 1.278888 1.278727 1.277295 
15 1.279228 1.279238 1.278786 1.278743 1.280012 1.279168 1.279108 1.278892 1.279162 1.275511 1.277873 1.278302 1.278931 1.279253 
20 1.279032 1.278751 1.278919 1.276851 1.273951 1.279183 1.279115 1.279042 1.279057 1.274671 1.277824 1.277113 1.279079 1.030024 
25 1.279380 1.278757 1.278908 1.274472 1.279490 1.278916 1.278359 1.278668 1.279148 1.280365 1.272884 1.280673 1.279001 1.278997 
30 1.279011 1.279044 1.278811 1.279048 1.279520 1.279020 1.278911 1.278913 1.279072 1.279661 1.279232 1.279209 1.279032 1.279227 
35 1.278925 1.278817 1.278942 1.279214 1.275359 1.279093 1.278801 1.278443 1.278672 1.279460 1.277377 1.278921 1.278443 1.278672 
40 1.278852 1.278847 1.278901 1.274682 1.279181 1.279036 1.278420 1.278727 1.302920 1.298616 1.275554 1.278981 1.279063 1.278842 
45 1.279085 1.278850 1.279365 1.279421 1.279579 1.278696 1.279076 1.278931 1.279076 1.279532 1.277542 1.278995 1.279127 1.279026 

25 5 1.279026 1.279468 1.278816 1.341187 1.284736 1.278727 1.276035 1.274630 1.278743 1.280012 1.290338 1.277873 1.278302 1.278931 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 1.278911 1.278913 1.279072 1.289262 1.275608 1.278931 1.278560 1.277295 1.279183 1.272884 1.275511 1.278955 1.278763 1.278842 
15 1.278801 1.278443 1.278672 1.279084 1.277916 1.277824 1.290338 1.279253 1.278916 1.279232 1.274671 1.209454 1.278888 1.278727 
20 1.279101 1.279063 1.278842 1.278009 1.280648 1.272884 1.275511 1.261456 1.279020 1.277377 1.280365 1.277873 1.278302 1.278931 
25 1.279101 1.279127 1.279026 1.278623 1.279425 1.279300 1.279183 1.278997 1.279093 1.275554 1.279661 1.279108 1.278892 1.279162 
30 1.278842 1.278712 1.278867 1.277113 1.279079 1.278478 1.278916 1.279227 1.279036 1.277650 1.279460 1.278509 1.276563 1.277863 
35 1.279160 1.278996 1.278957 1.280673 1.279001 1.278695 1.279020 1.278815 1.279742 1.279643 1.278921 1.278111 1.302920 1.298616 
40 1.278943 1.278929 1.278853 1.279209 1.279032 1.279135 1.279093 1.236435 1.278888 1.278727 1.278981 1.279347 1.279076 1.279532 
45 1.279023 1.278894 1.279684 1.279288 1.279068 1.278914 1.279036 1.277873 1.278302 1.278931 1.278995 1.279168 1.278743 1.280012 

30 

5 1.278804 1.278848 1.341594 1.275145 1.277409 1.278980 1.278983 1.274635 1.277824 1.277873 1.278302 1.278931 1.279101 1.279063 
10 1.279016 1.278256 1.279215 1.280867 1.297128 1.278911 1.278913 1.279072 1.272884 1.278955 1.278763 1.278842 1.279101 1.279127 
15 1.279300 1.279183 1.278868 1.283547 1.280236 1.278801 1.278443 1.278672 1.279232 1.278931 1.278560 1.277295 1.279183 1.272884 
20 1.278478 1.278916 1.279721 1.290539 1.278691 1.279115 1.279042 1.279057 1.277377 1.279108 1.278892 1.279162 1.278602 1.278509 
25 1.278695 1.279020 1.278984 1.278743 1.278873 1.278359 1.278668 1.279148 1.275554 1.277295 1.302920 1.298616 1.278679 1.278111 
30 1.279135 1.279093 1.279289 1.278916 1.279754 1.253568 1.278888 1.278727 1.278509 1.279253 1.279076 1.279532 1.278778 1.279347 
35 1.278914 1.279036 1.279167 1.279226 1.279467 1.277873 1.278302 1.278931 1.278111 1.261456 1.278743 1.280012 1.286567 1.278921 
40 1.278980 1.278983 1.279504 1.278451 1.279229 1.278815 1.279742 1.279643 1.279347 1.278997 1.278727 1.277824 1.290338 1.278981 
45 1.279033 1.279099 1.278986 1.279036 1.279183 1.279742 1.279643 1.278921 1.279168 1.279227 1.278931 1.272884 1.275511 1.278995 

35 

5 1.278914 1.279051 1.342198 1.296892 1.323468 1.277853 1.278911 1.278913 1.279072 1.279115 1.279042 1.279057 1.279183 1.277824 
10 1.278968 1.278602 1.278509 1.279254 1.286953 1.276463 1.278801 1.278443 1.278672 1.278359 1.278668 1.279148 1.278916 1.272884 
15 1.278593 1.278679 1.278111 1.279034 1.279435 1.279108 1.278892 1.279162 1.278815 1.279742 1.279643 1.290338 1.279020 1.279232 
20 1.278906 1.278778 1.279347 1.279243 1.279386 1.277295 1.204543 1.278888 1.278727 1.302920 1.298616 1.275511 1.279093 1.277377 
25 1.278831 1.278914 1.279168 1.276356 1.278944 1.279253 1.277873 1.278302 1.278931 1.279076 1.279532 1.274671 1.279036 1.275554 
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Input 
Lags 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 1.278921 1.278972 1.279116 1.279137 1.279186 1.261456 1.277353 1.298616 1.275511 1.278743 1.280012 1.280365 1.278509 1.278727 
35 1.278981 1.279108 1.278892 1.279162 1.278828 1.278997 1.279721 1.277873 1.278302 1.278931 1.278921 1.279661 1.278111 1.278931 
40 1.278995 1.279043 1.279714 1.279104 1.279934 1.279227 1.278984 1.278955 1.278763 1.278842 1.278981 1.279460 1.279347 1.263533 
45 1.278936 1.278927 1.278908 1.278818 1.276134 1.278589 1.279289 1.277824 1.290338 1.277758 1.278995 1.286453 1.279168 1.274565 

40 

5 1.279888 1.341460 1.278887 1.282920 1.334625 1.277824 1.274644 1.272884 1.275511 1.278911 1.278913 1.279072 1.275035 1.273053 
10 1.278965 1.278785 1.279356 1.284714 1.295953 1.272884 1.277824 1.290338 1.275533 1.278801 1.278443 1.278672 1.277645 1.274400 
15 1.279015 1.279086 1.279109 1.284559 1.277295 1.279232 1.272884 1.275511 1.279108 1.278892 1.279162 1.279115 1.279042 1.279057 
20 1.278849 1.278927 1.278998 1.279543 1.279253 1.277377 1.278302 1.279183 1.279086 1.211343 1.278888 1.278727 1.290338 1.279148 
25 1.278930 1.278884 1.279006 1.279849 1.261456 1.275554 1.278763 1.278916 1.278927 1.277873 1.278302 1.278931 1.275511 1.277295 
30 1.279077 1.279042 1.279334 1.279965 1.278997 1.278509 1.278727 1.279020 1.278884 1.278815 1.279742 1.279643 1.274671 1.279253 
35 1.279074 1.279112 1.278997 1.279469 1.279227 1.278111 1.278931 1.279093 1.279042 1.278921 1.302920 1.298616 1.280365 1.261456 
40 1.278999 1.279081 1.278967 1.278972 1.279174 1.279347 1.277873 1.278302 1.278931 1.278981 1.279076 1.279532 1.279661 1.278997 
45 1.279057 1.278880 1.279062 1.279290 1.279087 1.279168 1.278955 1.278763 1.278842 1.278995 1.278743 1.280012 1.279460 1.279227 
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Appendix J 

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - GRMSE 

Testing value 

Input 
Lag 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

5 

5 1.753120 1.751782 1.578203 1.512070 1.222156 1.744544 1.590608 1.618171 1.754512 1.750648 1.750782 1.690646 1.708648 1.583944 
10 1.739693 1.585780 1.754303 1.692375 1.585417 1.613666 1.650819 1.587109 1.722891 1.697171 1.705152 1.734404 1.732219 1.661379 
15 1.653088 1.648694 1.641296 1.582979 1.566051 1.676204 1.719556 1.704096 1.701879 1.624520 1.715581 1.723140 1.729678 1.748532 
20 1.342395 1.676456 1.537831 1.649273 1.531838 1.724773 1.723400 1.704347 1.548775 1.696412 1.754910 1.715466 1.706092 1.714876 
25 1.657602 1.591055 1.643938 1.617569 1.559640 1.725103 1.713860 1.751833 1.640667 1.602836 1.714876 1.709911 1.741020 1.750837 
30 1.713571 1.640111 1.596789 1.579421 1.604079 1.727451 1.685937 1.735592 1.583944 1.730716 1.750837 1.703059 1.709771 1.713571 
35 1.621557 1.694729 1.659768 1.550937 1.595059 1.708900 1.703059 1.708900 1.678171 1.737439 1.690646 1.708648 1.709911 1.621557 
40 1.655911 1.736459 1.677415 1.678133 1.706655 1.732364 1.306365 1.749885 1.756540 1.754053 1.720954 1.732522 1.703059 1.655911 
45 1.604291 1.698389 1.632100 1.612234 1.682927 1.742399 1.548775 1.652582 1.653386 1.720111 1.678329 1.723380 1.703652 1.708590 

10 

5 1.342395 1.749885 1.754315 1.381371 1.383413 1.650819 1.653386 1.720111 1.678329 1.583944 1.706092 1.676204 1.719556 1.704096 
10 1.548775 1.652582 1.748953 1.659441 1.736902 1.754512 1.585780 1.754303 1.692375 1.661379 1.741020 1.724773 1.723400 1.704347 
15 1.640667 1.660310 1.667643 1.588746 1.545685 1.722891 1.648694 1.641296 1.582979 1.748532 1.709771 1.725103 1.713860 1.751833 
20 1.341769 1.565522 1.744544 1.590608 1.618171 1.754512 1.750648 1.617569 1.559640 1.714876 1.709911 1.727451 1.685937 1.735592 
25 1.661379 1.711054 1.613666 1.650819 1.587109 1.722891 1.697171 1.579421 1.604079 1.750837 1.703059 1.708900 1.755772 1.719740 
30 1.748532 1.640789 1.703820 1.696412 1.724156 1.750782 1.624520 1.324194 1.595059 1.690646 1.708648 1.732364 1.679910 1.728447 
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Input 
Lag 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

35 1.714876 1.689388 1.690105 1.602836 1.592220 1.705152 1.639393 1.678133 1.706655 1.734404 1.732219 1.742399 1.730358 1.716971 
40 1.750837 1.708716 1.682094 1.730716 1.614880 1.715581 1.744544 1.590608 1.618171 1.723140 1.729678 1.678171 1.737439 1.665384 
45 1.748008 1.724284 1.723380 1.703652 1.708590 1.754910 1.613666 1.650819 1.587109 1.652035 1.645939 1.756540 1.754053 1.720954 

15 

5 1.354290 1.740027 1.730774 1.220721 1.612468 1.583944 1.713860 1.751833 1.585780 1.754303 1.692375 1.653386 1.720111 1.678329 
10 1.645503 1.682967 1.696802 1.553488 1.766886 1.661379 1.685937 1.735592 1.648694 1.641296 1.582979 1.698856 1.725103 1.750782 
15 1.667158 1.751042 1.682500 1.483061 1.607155 1.748532 1.719078 1.744544 1.590608 1.618171 1.617569 1.559640 1.727451 1.705152 
20 1.667158 1.796540 1.706092 1.669819 1.613037 1.714876 1.728743 1.613666 1.650819 1.587109 1.579421 1.604079 1.708900 1.715581 
25 1.755772 1.719740 1.706092 1.657660 1.630945 1.750837 1.690646 1.708648 1.754512 1.750648 1.542137 1.595059 1.732364 1.754910 
30 1.679910 1.728447 1.741020 1.710802 1.779804 1.754512 1.734404 1.732219 1.722891 1.697171 1.678133 1.706655 1.742399 1.754512 
35 1.730358 1.716971 1.709771 1.751113 1.686343 1.722891 1.723140 1.729678 1.701879 1.624520 1.676204 1.719556 1.704096 1.722891 
40 1.738050 1.753004 1.709911 1.718676 1.615773 1.750782 1.678171 1.737439 1.665384 1.682500 1.724773 1.723400 1.704347 1.701879 
45 1.683869 1.732050 1.703059 1.652916 1.685706 1.705152 1.756540 1.754053 1.720954 1.706092 1.747279 1.709616 1.689858 1.706092 

20 

5 1.739496 1.750643 1.222641 1.513269 1.531187 1.690646 1.708648 1.653386 1.720111 1.678329 1.583944 1.713860 1.751833 1.741020 
10 1.642547 1.617470 1.542056 1.749791 1.622847 1.734404 1.732219 1.727451 1.617569 1.559640 1.661379 1.685937 1.735592 1.709771 
15 1.719078 1.667584 1.755888 1.724874 1.731458 1.723140 1.729678 1.708900 1.579421 1.604079 1.748532 1.725195 1.741020 1.725103 
20 1.728743 1.631100 1.651640 1.641700 1.587105 1.585780 1.754303 1.692375 1.550937 1.595059 1.714876 1.713525 1.709771 1.727451 
25 1.697833 1.715068 1.732685 1.577792 1.732614 1.706092 1.641296 1.582979 1.678133 1.706655 1.750837 1.704096 1.709911 1.708900 
30 1.685206 1.711747 1.754512 1.750648 1.677941 1.741020 1.750782 1.714876 1.744544 1.590608 1.618171 1.704347 1.703059 1.732364 
35 1.705060 1.724535 1.722891 1.697171 1.537066 1.709771 1.705152 1.750837 1.676204 1.719556 1.704096 1.702462 1.719639 1.742399 
40 1.721698 1.737311 1.701879 1.624520 1.689407 1.709911 1.715581 1.754512 1.724773 1.723400 1.704347 1.678171 1.737439 1.665384 
45 1.739538 1.747279 1.709616 1.689858 1.690614 1.703059 1.754910 1.722891 1.701536 1.740324 1.669540 1.756540 1.754053 1.720954 

25 5 1.751072 1.741203 1.707887 1.222083 1.609097 1.711747 1.754512 1.585780 1.754303 1.692375 1.754512 1.750648 1.583944 1.706092 
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Input 
Lag 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

10 1.744388 1.669676 1.654721 1.614027 1.653145 1.724535 1.722891 1.648694 1.641296 1.582979 1.722891 1.697171 1.661379 1.741020 
15 1.690828 1.779961 1.757605 1.714700 1.817523 1.737311 1.701879 1.706092 1.725103 1.744544 1.701879 1.624520 1.748532 1.709771 
20 1.690646 1.651355 1.755472 1.777042 1.720710 1.617569 1.559640 1.741020 1.727451 1.613666 1.650819 1.587109 1.714876 1.728743 
25 1.690646 1.708648 1.737758 1.735634 1.699588 1.579421 1.604079 1.709771 1.708900 1.732219 1.648694 1.750782 1.750837 1.697833 
30 1.734404 1.732219 1.686271 1.625939 1.752844 1.550937 1.595059 1.709911 1.732364 1.729678 1.744544 1.705152 1.740009 1.715581 
35 1.723140 1.729678 1.686892 1.727232 1.726699 1.678133 1.706655 1.703059 1.678171 1.737439 1.665384 1.715581 1.736015 1.754910 
40 1.727917 1.715231 1.753639 1.693570 1.667230 1.676204 1.719556 1.704096 1.756540 1.754053 1.720954 1.754910 1.751833 1.742399 
45 1.723950 1.742231 1.702462 1.719639 1.721137 1.724773 1.723400 1.704347 1.653386 1.720111 1.678329 1.685937 1.735592 1.750782 

30 

5 1.672257 1.756066 1.222323 1.585465 1.628772 1.725103 1.713860 1.751833 1.706092 1.585780 1.754303 1.692375 1.720972 1.583944 
10 1.599652 1.627413 1.662973 1.720972 1.539405 1.727451 1.685937 1.735592 1.741020 1.648694 1.641296 1.582979 1.676076 1.661379 
15 1.737581 1.685719 1.769415 1.676076 1.725195 1.708900 1.737439 1.754911 1.709771 1.756540 1.754512 1.750648 1.617569 1.748532 
20 1.816868 1.701536 1.740324 1.669540 1.713525 1.732364 1.754053 1.747834 1.709911 1.737439 1.722891 1.697171 1.579421 1.714876 
25 1.773451 1.731393 1.676204 1.719556 1.704096 1.742399 1.750782 1.774484 1.703059 1.754053 1.701879 1.624520 1.550937 1.750837 
30 1.715045 1.728581 1.724773 1.723400 1.704347 1.750782 1.705152 1.718225 1.729678 1.690646 1.708648 1.705334 1.678133 1.706655 
35 1.723566 1.718532 1.686424 1.718572 1.702996 1.705152 1.715581 1.741699 1.559640 1.734404 1.732219 1.744544 1.590608 1.618171 
40 1.728179 1.674703 1.741612 1.680900 1.740009 1.715581 1.678171 1.737439 1.665384 1.723140 1.729678 1.613666 1.650819 1.587109 
45 1.730170 1.720567 1.751062 1.736884 1.736015 1.754910 1.756540 1.754053 1.720954 1.653386 1.720111 1.678329 1.740009 1.715581 

35 

5 1.726022 1.752897 1.215094 1.562557 1.292455 1.678171 1.737439 1.665384 1.690646 1.708648 1.585780 1.754303 1.692375 1.750782 
10 1.754069 1.581568 1.653386 1.720111 1.678329 1.756540 1.754053 1.720954 1.734404 1.732219 1.648694 1.641296 1.582979 1.705152 
15 1.760610 1.759410 1.752134 1.729691 1.749757 1.719556 1.583944 1.706092 1.723140 1.729678 1.744544 1.590608 1.618171 1.715581 
20 1.751360 1.725103 1.737323 1.749504 1.735460 1.723400 1.661379 1.741020 1.617569 1.559640 1.613666 1.650819 1.587109 1.754910 
25 1.776378 1.727451 1.730488 1.592419 1.754299 1.718572 1.748532 1.709771 1.579421 1.604079 1.725103 1.750782 1.754512 1.750648 
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Input 
Lag 

Hidden 
Nodes 

Outliers 
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 

30 1.755652 1.708900 1.713860 1.751833 1.699001 1.728179 1.714876 1.709911 1.550937 1.595059 1.727451 1.705152 1.722891 1.697171 
35 1.753978 1.732364 1.685937 1.735592 1.706930 1.730170 1.750837 1.703059 1.678133 1.706655 1.708900 1.715581 1.701879 1.624520 
40 1.732822 1.742399 1.706590 1.721531 1.717737 1.713860 1.751833 1.676204 1.719556 1.704096 1.732364 1.754910 1.737439 1.665384 
45 1.743368 1.755451 1.751705 1.749545 1.657548 1.685937 1.735592 1.724773 1.723400 1.704347 1.742399 1.653386 1.720111 1.678329 

40 

5 1.740551 1.222251 1.763151 1.684540 1.226402 1.706092 1.725103 1.754299 1.718572 1.754512 1.750648 1.678133 1.706655 1.708900 
10 1.754911 1.727425 1.706672 1.678479 1.533223 1.741020 1.727451 1.699001 1.728179 1.722891 1.697171 1.585780 1.754303 1.692375 
15 1.747834 1.678171 1.737439 1.665384 1.660183 1.709771 1.708900 1.750782 1.583944 1.701879 1.624520 1.648694 1.641296 1.582979 
20 1.774484 1.756540 1.754053 1.720954 1.723989 1.709911 1.732364 1.705152 1.661379 1.700423 1.617569 1.559433 1.690646 1.708648 
25 1.718225 1.737204 1.750782 1.712469 1.503197 1.703059 1.742399 1.715581 1.748532 1.590608 1.618171 1.604079 1.734404 1.732219 
30 1.741699 1.741241 1.705152 1.654488 1.755666 1.754512 1.750648 1.754910 1.714876 1.650819 1.587109 1.595059 1.723140 1.729678 
35 1.726120 1.732112 1.715581 1.744698 1.753355 1.722891 1.697171 1.744034 1.750837 1.743453 1.678133 1.706655 1.721436 1.653556 
40 1.747194 1.743979 1.754910 1.707656 1.721925 1.701879 1.624520 1.729342 1.713860 1.751833 1.676204 1.719556 1.704096 1.756754 
45 1.730893 1.748204 1.752852 1.711383 1.719571 1.677415 1.678133 1.706655 1.685937 1.735592 1.724773 1.723400 1.704347 1.704563 
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Appendix K 

Convergence Test with different number of lag and different number of epochs 

 

 

Epoch Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 Lag 30 Lag 35 Lag 40 

100 0.59314 0.54241 0.54264 0.51930 0.625566 0.53989 0.55713 0.53943 

200 0.56208 0.56385 0.55921 0.54721 0.54185 0.55202 0.54060 0.54189 

300 0.59944 0.58615 0.56382 0.54313 0.54722 0.54515 0.54901 0.56209 

400 0.59704 0.55577 0.56948 0.56862 0.54103 0.55093 0.54917 0.54684 

500 0.55671 0.56334 0.55434 0.54998 0.55125 0.562976 0.53673 0.53527 

600 0.56356 0.56274 0.56303 0.54542 0.54814 0.57882 0.54887 0.55263 

700 0.57670 0.56004 0.55848 0.55019 0.55155 0.55188 0.54556 0.54018 

800 0.56386 0.57483 0.55718 0.54572 0.55074 0.54553 0.54248 0.55799 
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900 0.57840 0.55622 0.55131 0.55513 0.54921 0.54924 0.54948 0.5608 

1000 0.56041 0.56274 0.55245 0.54047 0.55475 0.55988 0.53903 0.55376 
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