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Abstrak

Rangkaian Neural Rambatan Balik (BPNN) merupakan salah satu model yang paling
lazim digunakan bagi ramalan pasaran saham disebabkan kemampuannya sebagai
penganggar universal. Namun begitu, proses latthan BPNN berasakan Kaedah Kuasa
Dua Terkecil (OLS) cenderung menghasilkan anggaran pemberat yang tidak teguh
apabila terdapat nilai terpencil dalam data. Akibatnya, prestasi ramalan model BPNN
terjejas. Bagi menangani isu ini, kajian ini mencadangkan pendekatan alternatif
dengan menggantikan OLS kepada algoritma Pertumbuhan Biji Kurma Kuasa Dua
Median Terkecil (DPSG-LMedS). Pendekatan ini bertujuan untuk meningkatkan
ketepatan ramalan pada tahap pencemaran data yang berbeza dalam pasaran saham.
DPSG-LMedS melibatkan lima fasa, iaitu melatih rangkaian secara berulang dengan
meminimumkan ralat median yang dianggarkan, membuang nilai terpencil
berdasarkan sisihan piawai yang teguh, melatih semula menggunakan data yang
telah disaring, dan menghentikan proses apabila ralat LMedS terbaik memenuhi
kriteria yang ditetapkan. Seterusnya prestasi model dinilai menggunakan data
simulasi dan data sebenar. Dalam analisis simulasi, ketepatan model baharu dinilai
berdasarkan tahap pencemaran data yang berbeza (0% hingga 65%), konfigurasi lag
input (5 hingga 45), dan nod tersembunyi (5 hingga 45). Data sebenar bagi harga
penutupan pasaran saham FBM KLCI digunakan untuk membandingkan prestasi
model baharu dengan BPNN dan BPNN bersama LMedS. Model dengan prestasi
terbaik ditentukan berdasarkan nilai terendah bagi Ralat Punca Min Kuasa Dua
(RMSE) dan Ralat Punca Min Kuasa Dua Geometrik (GRMSE). Keputusan daripada
analisis simulasi menunjukkan bahawa model baharu berprestasi baik pada semua
tahap pencemaran data, dengan konfigurasi lag input yang sederhana dan nod
tersembunyi yang terendah. Perbandingan menggunakan data sebenar menunjukkan
bahawa model baharu mengatasi prestasi model-model lain. Model baharu ini
menawarkan model peramalan yang lebih dipercayai dan dijangka dapat menyokong
pelabur, ahli ekonomi, pembuat dasar, serta institusi kewangan dalam membuat
keputusan yang lebih tepat dan berinformasi. Selain itu, ia turut menyumbang
kepada pembangunan teknik rangkaian neural yang lebih teguh bagi aplikasi ramalan
kewangan.

Kata Kunci: Algoritma Pertumbuhan Biji Kurma, Kuasa Dua Median Terkecil,

Nilai Terpencil, Rangkaian Neural Rambatan Balik Teguh, Ramalan Pasaran Saham.
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Abstract

Backpropagation Neural Network (BPNN) is one of the most commonly used
models for stock market prediction due to its ability as universal estimators.
However, the Ordinary Least Squares (OLS)-based training in BPNN leads to non-
robust weightage estimates in the presence of outliers. Consequently, it affects the
prediction performance of the BPNN model. Addressing this issue, this study
proposes an alternative approach by replacing OLS with Date Palm Seed Growth
Least Median Squares (DPSG-LMedS) algorithm. This approach aims to improve
the prediction accuracy at different levels of data contamination in stock market.
DPSG-LMedS involve five phases which are training the network iteratively by
minimizing the median of estimated errors, removing outliers based on robust
standard deviation, retraining on the cleaned data, and stopping once the best LMedS
errors meet the setting criteria. Next, the model performance is evaluated using
simulated and real data. In simulation analysis, the accuracy of the new model is
assessed based on different levels of data contamination (0% to 65%), input lags (5
to 45), and hidden node (5 to 45) configurations. Real data of FBM KLCI stock
market closing prices is used to compared the performance of the new model with
BPNN and BPNN with LMedS. The best-performing model is determined based on
the lowest values of Root Mean Square Error (RMSE) and Geometric Root Mean
Square Error (GRMSE). Results from simulated analysis shows that the new model
performed well at all levels of data contamination with configuration moderate lags
input and lowest hidden nodes. Comparison using real data indicate that the new
model outperformed other models. This new model offers a more reliable predicting
model and is expected to support investors, economists, policymakers, and financial
institutions in making more accurate and informed decisions. Additionally, it
contributes to the development of robust neural network techniques for financial
prediction applications.

Keywords: Date Palm Seed Growth Algorithm, Least Median Square, Outliers,
Robust Backpropagation Neural Network, Stock Market Prediction.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

This chapter explains the research background, problem statement, research questions,
research objectives, the scope of the study, and the significance of this research
accordingly. There are altogether seven sections in this chapter. The research
background of the study is presented in Section 1.2 and consists of stock market
prediction focused on Financial Times Stock Exchange (FTSE) Bursa Malaysia Kuala
Lumpur Composite Index (FBM KLCI) dataset. Section 1.3 highlights the problem
statement of this research. Furthermore, the research questions and the research
objectives are presented in Section 1.4 and Section 1.5 respectively. Then, Section 1.6
explains the scope and limitations of this research work. In Section 1.7, the
significance of the research work is presented according to the research objectives.

Last but not least, the summary of this chapter is presented in Section 1.8.

1.2 Research Background

Decreasing economy in Malaysia due to a lacks of initiatives is one of the hot
problems. The Chief Economist Bank Muamalat Malaysia Bhd, Mohd Afzanizam
states that the ringgit appears to be undergoing a technical correction as it rose
relatively high in early January 2024 (BERNAMA, 2024). This problem shows that
the economy in Malaysia is not good, and it is one of the reasons why investors need

to learn how to invest in stock markets.



Bursa Malaysia, established in 1930 under the name Singapore Stockbrokers'
Association, holds the distinction of being the first formal securities exchange. Over
time, the exchange underwent several name changes. In 2004, it transitioned from the
Kuala Lumpur Stock Exchange (KLSE) to Bursa Malaysia, driven by the goal of

enhancing its customer-centric and market-oriented approach.

The exchange offers comprehensive services, including settlement, depository
services, listing, exchange functions, and clearing operations, all of which are fully
integrated. By the close of 2008, a fully electronic trading system had been
introduced. According to the exchange's website (Kenton, 2020), around 900 firms
are eager to utilize this system for fundraising through various business practices.
Ensuring the accuracy of predicted values is crucial, emphasizing the significance of

employing the most effective trading system.

Stock market forecasting presents a prominent and highly significant endeavor within
the realm of economics. This challenge arises from the presence of outliers in stock
market data. Predicting the behavior of the stock market is widely recognized as one
of the most formidable tasks in this field (Jin et al., 2020). Al-Mashhadani et al.
(2021) emphasize that stock price prediction is an extremely challenging task due to
the complexity and numerous aspects involved. Furthermore, the stock market
remains characterized by its volatility and dynamic nature, further complicating
prediction efforts (Zhang et al., 2021). Consequently, stock market prediction poses a
considerable dilemma for investors seeking to make informed decisions on where to
allocate their funds for profitable returns (Gandhmal & Kumar, 2019).
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Stock market prediction involves the utilization of input variables encompassing
fundamental indicators, technical indicators, and external factors, as discussed by
Kumar et al. in 2020. The first type of input variable is fundamental indicators
including turnover, expenses, annual reports, assets and liabilities and income
statements. The second type is technical indicators that include parameters like Open
Price, Close Price, High Price, Low Price, and Moving Averages (Kumar et al., 2020).
Last but not least, external factors that encompass Oil Price, Gold Price, Commodity
Price, and Exchange Rate are also the type of input variable that can be in stock
market prediction. Various types of variables can be employed to predict stock market
behavior. However, this research specifically concentrates on utilizing closing prices
as the primary dataset for prediction due to its significance in the stock market,

alongside the varying severity of outlier issues in the data.

Starting from 2019, the whole world is forced to endure economic hardship due to the
rapid spread of the Coronavirus Disease 2019 (COVID-19) (Khanthavit, 2021). The
impacts of COVID-19 on the economy have been significant and disadvantageous
(Hasanat et al., 2020). The unanticipated recession triggered by the pandemic has
severely impacted multiple economic sectors, leaving the economy in a state of
ongoing uncertainty (Gamal et al., 2021). In the Malaysian stock market, the
pandemic was found positively impact the FBM KLCI and sectoral indices, despite
the implementation of the Movement Control Order (MCO) and the cessation of most
economic activities. This scenario worsened the problem of outlier values that exist in

the FBM KLCI stock market dataset (Basuony et al., 2021). The problem of outliers



was identified in the prediction of the Malaysian stock market, as highlighted by

Seong and Salleh in 2022.

Outliers are typically regarded as random occurrences that cannot be predicted
(Naidoo & Du, 2022). In the FBM KLCI dataset, the presence of outliers becomes
apparent during the training phase when lag variables are introduced. Consequently,
this study opts for univariate analysis, selecting closing prices as the core dataset.
Nonetheless, the creation of additional variables becomes necessary to address outlier

problems.

According to the findings by Rusiecki (2012), an outlier within a dataset is a
numerical value that exhibits significant deviation from the rest of the data points.
These outliers can exert a noticeable impact on measures of central tendency,
especially the mean, as noted by Mishra et al. in 2019. Within a dataset, outliers can
disrupt modeling accuracy and influence the estimated parameters, particularly in

statistical analysis.

Backpropagation was defined as a supervised learning algorithm used for training
artificial neural networks. It played a crucial role in minimizing the error between
predicted and actual outputs by adjusting the weights of the network through a
process known as gradient descent. This algorithm was essential for enabling neural
networks to learn from data and improve their performance over time. When it comes
to the training process of backpropagation in neural networks, outliers can
significantly affect the weight adjustment process. Even a single outlier can propagate

its effects throughout the network, potentially leading to inaccuracies in the final
4



results. The significant impact of a single outlier is that it can distort the learning
process of the neural network, causing it to focus disproportionately on the outlier
rather than the general pattern of the data. This can lead to poor generalization and
reduced prediction accuracy. In the context of stock market prediction, this means that
the model may make erroneous predictions, resulting in potential financial losses for

investors and speculators.

The presence of outliers in time series data is a common occurrence, typically ranging
from 1% to 10% in routine data. Outliers represent data points that deviate
substantially from the established patterns within the majority of the dataset, as
explained by Rusiecki in 2013. These values may deviate markedly from the typical
sample values, either due to measurement errors or because they reflect significant
features within the data. Previous studies have indicated that the existence of such
outliers can pose a challenge to conventional least square analysis methods,

potentially making them formidable competitors.

Various linear and nonlinear time series approaches are employed to predict stock
market behavior with the aim of minimizing prediction errors, such as Autoregressive
Integrated Moving Average (ARIMA) (Hafiz et al., 2019), Neural Network (NN)
(Averitt & Natarajan, 2018), Long Short-term Memory (LSTM) (Lv et al., 2021), and
Recurrent Neural Network (RNN) (Reddy et al., 202). However, ARIMA models are
sensitive towards outliers (Agnieszka & Magdalena, 2018). In such cases,
preprocessing the data to eliminate these outliers may be necessary before applying
ARIMA models. Additionally, ARIMA models tend to underperform when applied to

5



long-term forecasts due to the assumption of stationarity in the underlying time series

data, which may not hold true for long-term predictions (Wang et al., 2023).

Nonetheless, ARIMA encounters challenges when dealing with practical nonlinear
problems. Nonlinearity is employed to characterize situations where there is not a
straightforward or direct relationship between an independent variable and a
dependent variable (Hayes, 2021). Consequently, as Ma and Ihler noted in 2020,
linear models tend to outperform more complex structural models. Furthermore, noise
is a prevalent problem in many forecasting domains, necessitating the application of
noise-resistant methods for stock market prediction. Accurately forecasting stock

market prices is undeniably a challenging task (Yiing & Thim, 2015).

In the realm of Artificial Intelligence (AI), Artificial Neural Networks (ANNs) were
utilized to enhance the accuracy of stock market prediction, as emphasized by
Bhardwaj et al. (2020). ANNs outperform traditional statistical methods due to their
effective handling of both linear and nonlinear time series data, whether it is noisy or
not (Ashour et al., 2018). A notable advantage of ANNs is their ability to operate
without requiring prior information about the systems of interest. Since their
versatility as function approximators, ANNs have gained significant attention from

practitioners across diverse fields.

Utilizing an Al approach enables the implementation of advanced automation and
computational methods to enhance results while reducing errors, as highlighted by
Chuan et al. (2021). Numerous Al techniques, including Genetic Algorithms,

Decision Trees Algorithms, Support Vector Machines (SVM), Neural Networks
6



(NN), Deep Learning (DL), and Machine Learning (ML), can be employed to develop

models capable of addressing complex challenges.

However, NN is frequently used in Al especially ANNs. ANNs offer numerous
advantages in the realm of stock market prediction. As discussed across various
research articles, ANNs excel in managing complex, non-linear relationships between
input and output variables, rendering them well-suited for stock market prediction,
which are influenced by a multitude of factors (Yetis et al., 2014; Selvamuthu et al.,
2019; Chhajer et al., 2022). Moreover, they possess the capability to learn from
historical data and adapt to evolving market conditions, enhancing their utility in

predicting future stock prices (Yetis et al., 2014; Bing et al., 2012).

Furthermore, ANNs can integrate technical analysis components, such as moving
averages and trading volumes, into their predictions, leading to heightened accuracy
(Selvamuthu et al., 2019; Oh, 2022). Additionally, ANNs are adept at handling
substantial volumes of data and discerning patterns that may elude human analysts,
resulting in more accurate predictions (Oh, 2022). Through a sufficient period of fund
simulation, ANNs can provide dependable results, empowering investors to make

confident decisions without the need for daily data analysis (Oh, 2022).

Overall, ANNs offer several advantages in stock market prediction, encompassing
their adeptness at handling intricate relationships, adapting to market dynamics, and
incorporating technical analysis. These attributes make ANNs a valuable tool for
projecting future stock prices and assisting investors in making well-informed

choices.



Another significant concern pertains to the presence of outliers within stock market
data, which can exert a notable influence on the approximated model, particularly
when employing the least squares method. Addressing outliers in a time series
commonly involves identifying these outliers and subsequently applying intervention
models to investigate their effects. Tsay (1988) notes that the iterative approach
necessitates multiple iterations between outlier detection and model parameter

estimation.

In this context, two particularly useful methods for characterizing data in terms of

location and dispersion are metrics for mean and variance. When data is devoid of

outliers, the sample mean X and variance s° of a sample X, = {x,}", typically provide

reliable estimates of location and dispersion. However, even a solitary observation
exhibiting significant variability can wield a substantial impact on both the sample
mean and dispersion matrix when the data is tainted. Consequently, employing robust
model estimation techniques proves advantageous in situations involving
contaminated data (Bakar & Midi, 2019). It was referred to as contaminated data
because extreme values or anomalies could significantly distort the dataset. Failure to

account for the effects of contaminated data could lead to inaccurate forecasts.

Nonetheless, the influence of outliers on the neural network training process using
real stock market data, which may contain contaminated data, results in these outliers
affecting the data and propagating into subsequent lags. The impact of even a single
outlier on the dataset was significant, indicating that the presence of multiple outliers

could further disrupt the network learning process, as highlighted by Jang et al.
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(2015). This scenario can ultimately lead to erroneous network training and inaccurate

predictions regarding future stock market behavior.

In the context of time series data, the term "lag" signifies a specific time interval,
allowing for the emergence of autocorrelation (Naidoo & Du, 2022). Autocorrelation,
as explained by Linden and Adams in 2010, refers to the tendency of instances in a

time series to exhibit correlation with preceding instances.

Furthermore, the backpropagation neural network (BPNN) exhibits strong
performance in time series forecasting, particularly when applied to stock price time-
series data, as indicated by Ghasemiyeh et al. (2017). However, it's worth noting that
the backpropagation learning algorithm, which relies on minimizing the Ordinary
Least Square (OLS) of the Mean Square Error (MSE) cost function, lacks robustness
in the presence of outliers, potentially resulting in errors during the data training
process (El-Melegy et al., 2009). The MSE, a fundamental backpropagation learning
technique employed in multi-layer feedforward neural networks (MFNNs), quantifies

the disparity between the desired and actual output (Samantaray & Sahoo, 2020).

Hence, this study aims to enhance the robustness of the MSE in the backpropagation
algorithm, which is susceptible to violations due to outliers. This is achieved by
substituting OLS with Least Median Squares (LMedS) estimators, capable of
handling up to 50% outliers. However, it's worth noting that, as Rusiecki et al. pointed
out in 2014, LMedS exhibits notably low efficiency, and errors associated with
LMedS cannot be minimized through gradient algorithms. To enhance the efficiency

of the BPNN, the research employed a metaheuristic algorithm.
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The term 'Metaheuristic' was initially introduced by Glover in 1986 and was later
described as nature inspired by Askari et al. in 2020. The concept of "nature-inspired
computing" involves the development of algorithms that tackle optimization problems
by simulating natural phenomena or biological attributes, as explained by Ma et al. in
2022. Examples of metaheuristic algorithms include those inspired by plant biology,
such as the firefly algorithm, whale algorithm, and particle swarm optimization
algorithms (Gupta et al., 2020; Zhao et al., 2021). Furthermore, metaheuristic
algorithms represent a contemporary approach to fortifying the BPNN against

problems like outliers, as highlighted by Mamoudan et al. in 2023.

Hence, the primary objective of this research was to propose a new metaheuristic
algorithm termed the Date Palm Seed Growth (DPSG) optimization algorithm. This
innovative approach is inspired by the growth mechanism of date palm seeds, a
common agricultural practice in the Middle East where dates are cultivated in sandpits
and covered with stones. The key focus is to enhance the performance of the BPNN
model, thereby improving its effectiveness in forecasting stock market trends. This
enhanced BPNN model is equipped to autonomously adapt and effectively manage

stock market datasets that are afflicted by challenges like outliers problem.

1.3 Problem Statement

ANNs are extensively employed in stock market prediction analysis due to their
ability to effectively map nonlinear relationships between input and output variables.
Specifically, BPNN is well-suited for handling large-scale, complex data tasks that

exhibit nonlinearity. Nonlinearity referred to the complex and non-proportional
10



relationship between stock market inputs (such as prices and indicators) and outputs
(predictions). In the context of BPNN, the OLS estimators are commonly used.
However, it's crucial to note that the backpropagation algorithm based on OLS

struggles to address issues related to outliers.

In practice, big data sets, such as FBM KLCI data, often present challenges associated
with outliers. Outliers tend to emerge due to the influence of uncommon and non-
repetitive events. These outliers significantly impact the forecasting process by
substantially reducing forecast accuracy and introducing bias into parameter

estimations, as indicated by Hosseinioun in 2016.

Stock market prediction involves multiple influencing factors; however, this study
specifically examines univariate data due to the substantial impact of outliers on
historical price movements. The rationale for utilizing a univariate approach is to
facilitate a controlled analysis of the BPNN response to extreme fluctuations in stock
prices as a singular time-dependent variable (Chen et al., 2022). Prior research by
Anis and Bahar (2021) has highlighted that outliers in stock prices can significantly
compromise forecasting models, resulting in poor generalization and increased
prediction errors. By isolating stock price trends and excluding additional variables,
the effectiveness of the enhanced BPNN model in mitigating the adverse effects of

outliers could be evaluated.

Moreover, when working with the FBM KLCI dataset that exhibits outliers,

performance errors and network over-fitting problems become prevalent.
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Consequently, the accuracy of stock market predictions is adversely affected when

dealing with the FBM KLCI dataset afflicted by outliers.

Metaheuristic algorithms offer a range of advantages, including resilience to
collinearity and outliers. Building on the inspiration drawn from the growth
mechanism of date palm seeds, a metaheuristic algorithm was developed to minimize
LMedS. To address this challenge, this study introduces the LMedS estimator, which
is proficient at accommodating up to 50% of outliers. Regrettably, as noted in the
literature by Rusiecki et al. in 2014, LMedS exhibits notably low efficiency, and its

errors remain unmitigated by gradient algorithms.

Various metaheuristic techniques, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and the Firefly Algorithm (FA), were employed to enhance
LMedS. These methods aimed to improve the accuracy and robustness of the
estimator but continued to face challenges related to convergence speed, scalability,
and escaping local optima. To address these challenges, this research proposed the
Date Palm Seed Growth Optimization Least Median Square (DPSG-LMedS)

algorithm to mitigate these limitations.

1.4 Research Questions

The objectives of this research are to investigate several questions pertaining to the
challenges associated with univariate data, as outlined below:
1. How severe outliers problems of FBM KLCI dataset?

2. How to improve the predictive accuracy of BPNN model?
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3. How the performance of the enhanced BPNN model?

4. TIs the enhanced BPNN model reliable?

1.5 Research Objectives
The primary aim of this research is to enhance BPNN model, and in pursuit of this

objective, the following specific goals are set:

—

To identify the severity of outliers problems within the FBM KLCI dataset.

2. To develop an enhanced BPNN model for FBM KLCI stock market.

3. To compare the performance of the enhanced with the ordinary BPNN model
and BPNN-LMedS model.

4. To check the reliability of the enhanced BPNN model.

1.6 Scope of the Study

The analyzed data focused on the Malaysian stock market, referred to as the FBM
KLCI stock market (Al-Mashhadani et al., 2021). The FBM KLCI stock market data
was collected by extracting information from the Yahoo Finance website. The dataset
encompasses daily records spanning from 2™ January 2018 to 30" December 2022,
with a specific emphasis on univariate data, specifically the closing prices. The time
frame of the dataset purposely includes the stock market data during COVID-19

events (Khairudin et al., 2023).
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1.7 Significance of the Research

The enhanced BPNN has the capability to reduce network errors by addressing the
challenges posed by outliers. By integrating DPSG-LMedS algorithm into BPNN
model, the network errors can be reduced while addressing the outliers. This leads
towards the model efficiency and the prediction accuracy (Chen et al., 2024). This
study holds substantial importance for various stakeholders in the stock market.
Importantly, the utilization of the enhanced model in the research is anticipated to
yield enhanced profits for individuals with an interest in the stock market, including
speculators and investors. Moreover, since the optimization of the model been used,
the investors can enhance the accuracy of predictions regarding stock prices and
market movements. This leads to better-informed trading decisions, potentially

increasing profitability.

Accurate stock market predictions were crucial for economists in understanding
market trends and making informed economic forecasts. The enhanced BPNN model
provided a reliable tool for analyzing market behavior, aiding in the development of
economic policies and strategies. This study contributed to the academic community
by presenting a robust neural network model that could be utilized for various
predictive analyses. Researchers could build upon this work to explore further

improvements and applications of BPNN in different domains.

For policymakers, accurate stock market predictions were essential for maintaining

economic stability. The enhanced BPNN model assisted in monitoring and regulating
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market activities, ensuring the stability of the FBM KLCI as a measure of the national

economy within an interconnected global economic landscape.

The study served as an educational resource for students pursuing studies in finance,
economics, and data science. It provided insights into the application of advanced
neural network models in real-world scenarios, fostering a deeper understanding of
predictive modeling techniques. Overall, this study demonstrated the practical
benefits of the enhanced BPNN model in improving prediction accuracy and

supporting various industry players and stakeholders in making informed decisions.

1.8 Summary

In this chapter, this research emphasizes the driving force behind the research and
delve into the common challenges encountered in big data like outliers. Consequently,
this research formulates research questions aimed at tackling these problems.
Subsequent to the development of the research questions, this research outlines the
study's objectives in the following section. Finally, this research portrays the study's

scope and underscores its significance in the concluding part of this chapter.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Chapter two extensively explores relevant literature concerning stock market
prediction using backpropagation neural networks (BPNN). Additionally, it delves
into the literature related to enhancing BPNN through the application of metaheuristic
approaches. Section 2.2 provides an overview of the literature pertaining to the stock
market in Malaysia, while Section 2.3 presents a review of previous studies regarding
neural networks in stock market prediction globally. Section 2.4 presents the
application of BPNN model in previous research. The literature that specifics the use
of BPNN model in stock market prediction and outliers’ problem is discussed in
Section 2.5. Moreover, Section 2.6 has discussed the solving techniques for outliers’
problem which has been divided into two subsections; Section 2.6.1 delved into the
metaheuristic approach while focusing on the least median square (LMedS). The
component in BPNN modelling has been explained in eight subsections under Section
2.7. Furthermore, Section 2.8 addresses the validation of time series neural network
models for stock market prediction. Based on the previous study, the convergence test
for the enhanced model has been explained in Section 2.9. Finally, Section 2.10 offers

a comprehensive summary of the chapter's contents.
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2.2 Stock Market in Malaysia

The stock market in Malaysia, represented by Bursa Malaysia, has played a pivotal
role in the nation's economic growth. Early research on the Malaysian stock market,
such as Lai and Lau (2004), traced its historical development from its beginnings in
the 1960s, highlighting the influence of commodity trading and government policies.
Numerous studies, including the work of Lean and Smyth (2010), have examined the
efficiency of the Malaysian stock market. Researchers have employed various
methodologies to test whether the market adheres to the Efficient Market Hypothesis
(EMH) and to what degree. The impact of macroeconomic variables on stock market
performance in Malaysia has been a recurring theme. The relationship between
economic indicators like Gross Domestic Product (GDP) growth, inflation, and
interest rates, and stock market movement has been studied (Ho, 2019). Malaysia's
prominence in Islamic finance has been investigated in numerous studies. Hassan et
al., (2022) examined the performance and growth of Islamic indices and funds in
Malaysia. Corporate governance practices and transparency in financial reporting
have been scrutinized. The study by Boadi and Amegbe in 2017 explored the
relationship between corporate governance quality and stock market performance.
Recent research by Barbosa et al. in 2023 explored the integration of Environmental,
Social, and Governance (ESG) factors into investment decisions and their

implications for the Malaysian stock market.

Research has shown that the development of the Malaysian stock market, as measured

by market capitalization, has a positive but statistically insignificant relationship with
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the country's economic growth (Zulikifli et al., 2024). This suggests that while the
stock market plays an important role, other factors also contribute to Malaysia's

economic growth.

At the same time, the performance of the FBM KLCI has been resilient, with the
index emerging as the second-best performer in ASEAN in the second half of 2023,
closing the year at 1,454.7 points (Taharem & Fitriyah, 2023). This highlights the
market's capability to adapt and thrive, solidifying Bursa Malaysia's role as a viable

platform for fundraising and investing.

In terms of predicting stock market movements, studies have shown that neural
network models can be effective in forecasting stock prices in various markets around
the world, including Malaysia (Bursa, 2024). Therefore, the implementation of neural
network in stock market prediction globally were discussed further in Section 2.3 to

understand it further.

2.3 Neural Network in Stock Market Prediction Globally

Neural networks were used to predict stock prices in various markets around the
world. These models use historical stock data, such as prices and trading volume, as
input to predict future stock prices. The neural network attempts to learn the
underlying patterns and relationships in the data, which can then be used to make
predictions. However, predicting stock prices is a challenging task due to the

complexity and volatility of financial markets, and the accuracy of these predictions
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can vary. Additionally, it is essential to use a robust evaluation method and consider

the uncertainty of the predictions to get a more realistic result.

There were many studies in the literature that used neural networks to predict stock
prices in various markets around the world. The study by Abdouli et al. (2020) used a
long short-term memory (LSTM) neural network to predict Tehran Stock Exchange
(TSE). The authors found that the LSTM model outperformed traditional time series
models, such as Autoregressive Integrated Moving Average (ARIMA) in terms of

prediction accuracy.

Another study by Guresen et al. (2011) applied a Multi-Layer Perceptron (MLP)
model, to predict National Association of Securities Dealers Automated Quotations
(NASDAQ) stock exchange. The results showed that the MLP model more accurate
compared to generalized autoregressive conditional heteroscedasticity MLP

(GARCH-MLP) and dynamic artificial neural network (DANN) model.

A study by Liu et al. (2021) used a deep neural network (DNN) to predict the dataset
provided by Jane Street, which originated from major stock exchanges around the
world. Jane Street was a financial services firm that engaged in trading a diverse array
of asset classes across over 200 trading venues in 45 countries worldwide. The
authors found that the neural network model outperformed others machine learning
(ML) models, such as Xgboost algorithm and random forest algorithm, in terms of

prediction accuracy.
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Research by Lv et al. (2021) used an enhanced model called as LightGBM-optimized
LSTM model to predict stock prices in the Shanghai and Shenzhen 300 indexes stock
market, and they found that the LightGBM-optimized LSTM model outperformed
other deep network models which is Gated Recurrend Unit (GRU) and recurrent

neural network (RNN).

Overall, these studies suggest that neural network models can be effective in
predicting stock prices in various markets around the world. However, it is important
to keep in mind that stock market prediction is a challenging task, and the results can
be affected by various factors such as market conditions, economic indicators, and

company specific events.

Last but not least, previous research shows that BPNN model is an effective and
widely used approach for predicting stock prices, outperforming other models in
terms of accuracy and problem-solving ability. The research that has been used BPNN

model in predicting stock market has been show in Section 2.4.

2.4 Backpropagation Neural Network

Backpropagation (BP) is a fundamental tool in machine learning for efficient training
(deep) neural networks (Brunel et al., 2019). BP operated through two main
processes, namely forward propagation and backward propagation. BPNN was
utilized in various studies, such as image recognition (Du et al., 2022), game

development (Bhasin & Vaishali, 2017), and healthcare (Torres et al., 2022).
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In the context of the stock market, the BPNN model was used to predict the stock
market. BPNN performs well in time series forecasting when it comes to stock price
time series data (Ghasemiyeh et al., 2017). Prior knowledge about systems of interest
is not needed. Due to their universal capacity as a function approximator, BPNNs
have successfully captured the attention of many practitioners in many fields.
However, in the presence of outliers that may cause errors in the data training process,
the backpropagation learning algorithm based on the minimization of the mean square
error (MSE) cost function is not completely robust. Several studies show the presence

of outliers as discussed in Section 2.5.

2.5 Backpropagation Neural Network in Stock Market Prediction with the

Presents of Outliers

The limitations of BPNN in handling outliers have been discussed in a previous
studies. Research by Chan et al. (2022) suggests that BPNN can be highly sensitive to
outliers, which can negatively impact prediction accuracy, making it less suitable for

datasets with extreme variations.

In addressing this issue, the selection of an appropriate loss function plays a critical
role, as it applies to individual data points to quantify the prediction error. Traditional
loss functions, such as Mean Squared Error (MSE), often amplify the influence of
outliers due to squared error penalization. Alternative loss functions, such as Mean
Absolute Error (MAE) and Huber Loss, offer more robust solutions by reducing the

disproportionate impact of extreme values.
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At a broader level, the cost function aggregates the loss function across the dataset,
guiding the optimization process to improve overall model performance. Therefore,
careful selection of the loss function directly influences the cost function, shaping the
effectiveness of BPNN in stock market prediction, particularly in datasets containing

outliers (Zhao et al., 2024).

Moreover, previous research has compared the forecasting performance of different
neural network models, including the BPNN model, for stock market returns. The
results showed that the cerebellar model articulation controller neural network
(CAMC NN) model made more accurate forecasts than the BPNN model

(Selvamuthu et al., 2019).

Outliers or extreme values can have a significant impact on the results of stock market
analysis and lag variable. The data can skew statistical measures such as the mean and
standard deviation and can lead to unreliable or misleading conclusions if not properly

handled.

Several studies investigated the presence of outliers in stock market data. For
example, a study by Chen et al. (2022) analyzed the Taiwan stock market and found
that outliers had a significant impact on the performance of technical trading rules.
Another study by Zhao et al. (2021) analyzed the Shanghai Stock Exchange and found

that outliers had a significant impact on the results of event study analysis.
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There are several methods that can be used to handle outliers in stock market analysis.
One common method is to simply remove them from the dataset, although this
approach has the potential to bias the results. Other methods include using robust
statistical measures, such as the median and interquartile range, and using outlier
detection algorithms, such as the Tukey method or the Z-score method. The prediction

result has been combined using the median.

A bias in the parameter estimation and the outliers on the point forecast may give an
effect to the forecast accuracy where it will decrease drastically. Outliers can have
deterious effects on statistical analyses. It also can result in parameter estimation
biases invalid inferences and weak votality forecasts in financial data (Hosseinioun,
2016). In numerous real data sets, outliers are a frequent occurrence. In the research
by Hampel et al. (1974), it showed that outliers typically occur in normal data ranges
which are from 1% to 10%. To address the outlier problem, two approaches may be
employed. One approach involves detecting outliers prior to constructing the model
with high-quality data, a process known as outlier diagnostics (Limas et al., 2004;
Rousseeuw & Leroy, 1987). Another approach was to employ resistant or robust

methods, which remained reliable even when some data was tainted

Last but not least, the outlier percentage has also been focused on in BPNN model in
order to get cater to the outliers. Previous research regarding the percentage of outliers

that can be catered for has been shown in Section 2.6.
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2.6 Outlier Percentage

The outlier percentage plays a crucial role in refining predictive models, enabling
analysts to enhance forecast accuracy. Numerous studies have implemented robust
techniques to improve the performance of BPNN by addressing the impact of outliers.
Research has shown that a significant portion of literature on outlier percentages

originates from time series data analysis, as highlighted by Blazquez-Garcia et al.

(2021).

In the research by Zhang and Qu (2021), the adaptive genetic algorithm in the
backpropagation neural network (AGA-BPNN) accommodated only 5% of outliers.
Furthermore, research addressed 20% of outliers using least trimmed squares (LTS)
estimators (Beliakov et al., 2011). Additionally, the firefly algorithm applied to the
least median squares estimator (FFA-LMedS), least trimmed absolute value (LTA),
and least median of squares (LMedS) improved convergence with 50% of outliers
(Kamaruddin et al., 2016; Rusiecki et al., 2014). Finally, Wang and Suter (2003)
demonstrated that the LTS method handled 40% of outliers, while their proposed
approach, least trimmed symmetry distance (LTSD), accommodated up to 60% of

outliers.

2.7 Solving Techniques for Outliers’ Problem

Dealing with outliers is a crucial step in data analysis and machine learning. Outliers
can significantly impact the results of statistical analyses and the performance of

prediction models. One of the techniques that can be used to handle the presence of
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outliers in financial time series data is a metaheuristic algorithm. Various articles have
demonstrated the effectiveness of these hybrid neural network metaheuristic
approaches in enhancing stock market prediction performance (Elhoseny et al., 2022,

Mamoudan et al., 2023).

2.7.1 Metaheuristic Approach

Metaheuristic algorithm is the optimization algorithm where it is inspired by animals
or nature (Amiri et al., 2024). It is random to find the new methods in order to get the
solutions that are optimum or close to optimal response. The word random in
developing the algorithms means that the local optimal solution isn’t restricted to a
specific answer. The metaheuristic approach can help to enhance the model. There are
a lot of metaheuristic algorithms that have been developed in previous studies.
Ghasemiyah et al. (2017) developed a novel algorithm that integrates multiple bio-
inspired optimization methods, including the Ant Colony Algorithm (ACO), Bee
Colony Optimization Algorithm (BCO), Bat Algorithm (BA), Particle Swarm
Optimization (PSO), Cuckoo Optimization Algorithm (COA), and Firefly Algorithm

(FA).

Moreover, in the study by Farahani and Hajiagha, (2021), an artificial neural network
(ANN) was optimized using metaheuristic algorithms, including cuckoo search (CS),
enhanced cuckoo search (ECS), genetic algorithm (GA), and particle swarm
optimization (PSO). The study compared the performance of the optimized models

with non-weighted models in predicting stock price indices. Moreover, there is also a
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study that focused on intraday stock price forecasting and found that the Particle
Swarm Optimization Optimized Backpropagation Neural Network (PSO-BPNN)
model yielded the highest prediction accuracy among the tested models (Kumar et al.,

2020).

Furthermore, there is a study that proposed an efficient hybrid symbiotic organisms
search feedforward neural network (SOSFFNN) model for stock price prediction. The
study combined global optimization metaheuristic approaches of symbiotic organisms
search (SOS), PSO, and GA with the Feedforward Neural Network (FFNN) model for
effective and efficient prediction of stock price indices (Pillay & Ezugwu, 2019).
These studies demonstrate the use of metaheuristic algorithms to enhance BPNN

models in stock market prediction, leading to improved accuracy and performance.

Zhao et al. (2021) used particle swarm and whale optimization algorithm to improve
backpropagation neural network. Gupta et al. (2020) found that plant-biology inspired

algorithm is superior efficiency compared to latest firefly algorithm.

Other than that, LMedS is the other technique that can also help to enhance the BPNN

model as being discussed in Section 2.6.2.

2.7.2 Least Median Square

The least median square (LMedS) method is a robust regression method which means
that it is not sensitive to outliers or other violation of assumption of the usual normal

model (Massart et al., 1986). According to Farida (2019), LMedS is a robust estimator
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for the presence of outliers and has a high breakdown value, showing better results
compared to OLS in stock market prediction. Moreover, other research also proved
that LMedS is better than OLS method in predicting regression parameter on data

with up to 3% of the percentage of outliers (Foss et al., 2001).

According to the research by Faraz and Khaloozadeh (2020), this research predicts the
Iran stock market closing price by using the enhanced model, Least Squares
Generative Adversarial Network (LSGAN). The result shows that the LSGAN
outperformed the ordinary model, Generative Adversarial Network (GANs) in stock
market prediction by using least-squares loss function and z-score method to remove

outliers.

2.8 Performance Validation of Time Series Neural Network models for Stock

Market Prediction

Validation of the time series models is really needed in order to the prediction of
stock market. There are a few types of validation such as bootstraps. Awajan et al.
(2018) validated the model using five techniques namely, Moving Block Bootstrap
(MBB), Fourier Transform (FT), Holt-Winter (HW), Intrinsic Mode Function (IMF)
and Empirical Mode Decomposition (EMD) applied to daily stock market from six
countries. The stock market data were obtained from indices representing the US-S&P

500, Sri Lanka, Netherlands, Malaysia, France and Australia.

The findings from the study by Awajan et al. (2018) indicated that Empirical Mode
Decomposition and Holt-Winter (EMD-HW) bagging forecasting results

27



demonstrated greater accuracy compared to these fourteen forecasting methods. The
evaluation was based on five error measures: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Theil’s U-

statistic (TheilU), and Mean Absolute Scaled Error (MASE).

Other than that, the research by Dantas and Oliveira (2018) focuses on enhancing time
series forecasting by combining bootstrap aggregation, clusters, and exponential
smoothing. The research utilizes the modified Moving Blocks Bootstrap (MBB)
algorithm proposed by Bergmeir et al. (2016) to conduct resampling, which is crucial
for improving the accuracy of stock market prediction models. The data used in the
research by Ren et al. (2018) included three types of stock market which are Standard

& Poor's (S&P), Dow Jones and NASDAQ.

Block bootstrap methods encompass several variations, including non-overlapping,
overlapping, and circular approaches, each of which had potential for application in
time series modeling if appropriate methodologies had been available. In the study
conducted by Akerstrom (2020), the training data was divided into two subsets: the
training set and the test set. The test set was required to be sufficiently large to yield
statistically significant results and to represent the overall dataset comprehensively.
The generalized training data was utilized to develop a model. To achieve the optimal

model, the cost function needed to be minimized.

Validating the performance of time series neural network models on out-of-sample

data is a critical step before deploying such models for real-world stock market
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prediction. However, it is equally important to test the convergence and stability of
the enhanced BPNN model itself to ensure it is optimizing properly and producing
reliable forecasts. The following section examined the techniques for assessing the

convergence of the enhanced BPNN model for stock market prediction.

2.9 Convergence Evaluation for Proposed Algorithm

The previous study has discussed the performance of ML models, including deep
learning (DL) models, in predicting stock prices (Sonkavde et al., 2023). According to
the study by Rizvi and Khalid (2024), the study compares the performance of various
DL models in predicting stock prices and discusses the importance of selecting
appropriate features and hyperparameters for improving the accuracy of predictions.
Moreover, there also a study that proposes a hybrid data analytics framework that
combines various stock-related information to improve the prediction performance of

ML models (Daradke, 2022).

Epochs played a role in training machine learning models for stock market prediction
by facilitating iterative learning and allowing fine-tuning of model parameters.
Understanding and optimizing the number of epochs was essential for developing

robust predictive models that generalized well to new market conditions.

Epochs and Root Mean Square Error (RMSE) value was used in previous research
related to stock market predictions that run the convergence tests (Moraitis et al.,
2021). Epochs and iterations are important parameters in training neural networks in

order to minimize the cost function (Mehmood et al., 2023) The performance of ANN
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evaluated by using MSE convergence progression versus epochs in stock market
predictions, while the RMSE value is used to measure the accuracy of the predictive

results (Moraitis et al., 2021).

According to the research by Kalaiselvi et al. in 2018, the maximum number of epoch
that being used in that study is 1000 epochs after predict the stock market with BPNN
model. Moreover, there is also another study that use 100 up to 1000 epochs in stock
price prediction using BPNN based on gradient descent with momentum and adaptive
learning Rate (Dwiarso et al., 2017). Furthermore, in the research by Dahal et al.
(2023), the research only use 30 epochs in order to test the convergence for LSTM
and Gated Recurrent Unit (GRU) model. The convergence has been tested in the
Indian stock market prediction using ANN with 16 to 1000 epochs (Selvamuthu et al.,

2019).

The number of epochs directly influenced the convergence of the adopted algorithm.
A small number of epochs could cause the method to converge at a local minimum,
whereas excessive epochs might lead to overlearning. The maximum number of
training epoch is 1000, but the stability of the MSE curve usually converged after 22

to 91 epochs for an ANN model, according to Moraitis et al. (2021).

2.10 Summary
In summary, there are still a lot of things that need to be improved. Furthermore, in

this research, univariate time series was applied. The outlier’s problem can be seen

from previous research (Vishwakarma et al., 2020). Therefore, this study aims to
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enhance the BPNN model to improve stock market forecasting accuracy, achieve the

lowest possible error rate, and mitigate the impact of outliers.
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CHAPTER 3
METHODOLOGY

3.1 Introduction

This chapter explains in detail the methodology used in this research. The structure of
this chapter is according to the research objectives. There are a few parts to answer
the first objective. In Section 3.2, this thesis explained the background of the data
which is a real dataset of the Financial Times Stock Exchange (FTSE) Bursa Malaysia
Kuala Lumpur Composite Index (FBM KLCI) dataset, how the data has been
collected and the diagnostic test that needed to test the outlier’s problem has been
discussed in two subsections. Then, in Section 3.3, the process of preprocessing data
was explained in this part which is data normalization and data partitioning. After
that, to answer the second objective, Section 3.3.1 and Section 3.32 explained the data
normalization and data partitioning process respectively. In Section 3.4, the
backpropagation neural network (BPNN) for stock market prediction explains the
process and how the ordinary BPNN model works. Next, section 3.5 elaborates on the
process of the evaluation of the prediction model using error measures where the error
measures were discussed in different sub-sections which is Section 3.5.1 regarding
Root Mean Square Error (RMSE) and Section 3.5.2 discusses the Geometric Root
Mean Square Error (GRMSE). After that, the convergence test was further discussed

in Section 3.6. Lastly, the summary of Chapter 3 was provided in Section 3.7.
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3.2 Data Background

A flowchart illustrating the four phases corresponding to the four objectives of this

research was developed based on Figure 3.1.

In the first phase, the data is collected, and a diagnostic test is conducted to achieve
the first objective which is to identify the severity of outliers problems of the FBM

KLCI dataset.

Following this, in the second phase, data preprocessing was conducted by normalizing
and partitioning the dataset. Subsequently, the BPNN model was enhanced by
replacing the Ordinary Least Square (OLS) cost function with the Least Median

Square (LMedS).

In Phase 3, the simulated and real datasets were used in experimentations. Then, the
comparison of the model’s performance for both BPNN model and enhanced BPNN

models using error measures is performed.

In the last phase, before starting to do the prediction, the model validation was used
the time series moving block bootstrap (MBB). Last but not least, the stock market

predicted for multi-step ahead using the validated model.
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Figure 3.1 shows the flowchart of research activities that were conducted in every

phase.

Data Collection: Data Scraping

v

Diagnostic Tests

PHASE 1:
OBJECTIVE 1

y

Outliers Detection

Evaluate the BPNN Model on FBM
KLCI Dataset

L= 0 % - -

Development of Pseudocode for the
Enhanced BPNN Model

Comparison between BPNN Model
and Enhanced BPNN Model

A\ 4

Models’ Performance Comparisons
using Simulated and Real Datasets

_—— = = = ¥ = = = = = = =

PHASE 2:
OBJECTIVE 2

PHASE 3:
OBJECTIVE 3

Model Valid?

Time Series Moving
Block Bootstraps

; Yes

Prediction of the stock data

PHASE 4:
OBJECTIVE 4

Figure 3.1. Research Flowchart
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3.2.1 Data Collection

Yahoo Finance served as the primary data source for this research. Secondary data
was utilized, as the Yahoo Finance website contained 1,222 daily closing price data
points, as suggested by Vijh et al. (2020), covering the period from January 2, 2018,
to December 30, 2022, for stock market prediction. Primary data collection was
deemed unnecessary, as the Yahoo Finance dataset met the research requirements and
provided a sufficiently large dataset for forecasting. The data was analyzed using both
the BPNN model and enhanced BPNN model, which were developed in Spyder

software by executing Python code.

3.2.2 Descriptive Analysis
Descriptive statistics are essential in stock market prediction as they help to
summarize and understand the data. Here are some key descriptive statistics that can

be used:

1. Mean Price: The mean provides the average value of stock prices over a

specific period. It helps in understanding the central tendency of the data.

2. Median Price: The median is the middle value of the stock prices when
arranged in ascending to descending order. It is useful for understanding the

central tendency, especially when the data has outliers.
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Standard deviation: This measures the dispersion or variability of stock
prices from the mean. A higher standard deviation indicates more volatility in

the stock prices.

Variance: Variance is the square of the standard deviation and provides a

measure of the spread of stock prices around the mean.

Minimum and Maximum Price: These values indicate the lowest and highest
stock prices within a specific period, providing insights into the range of price

fluctuations.

Skewness and Kurtosis:

Skewness can help the neural network understand the asymmetry in the
distribution of stock prices, which can be important for capturing market

anomalies.

Kurtosis provides information about the “tailedness” of the distribution,
helping the neural network understand the probability of extreme price

movements.

Simple Moving Average (SMA):

Moving averages can be used as features to smooth out short-term fluctuations
and highlight longer-term trends. They are commonly used in technical

analysis and can be valuable inputs for neural networks. SMA 50 (50-Day
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Simple Moving Average) represents the average closing price over the past 50

days. It reflects short-term trends in the stock price. SMA 200 (200-Day

Simple Moving Average) represents the average closing price over the past

200 days. It reflects long-term trends in the stock price.

The stock price was considered as upward trend when:

SMA 50 is above SMA 200: If the 50-day SMA crosses above the
200-day SMA, it is generally considered a bullish signal, indicating an
upward trend. This is known as a "Golden Cross." Golden Cross
indicates potential upward momentum and is often seen as a buy

signal.

When Both SMAs are Rising: If both the 50-day and 200-day SMAs

are rising, it suggests a strong upward trend.

The stock price was considered as downward trend when:

When SMA_50 is Below SMA_200: If the 50-day SMA crosses below
the 200-day SMA, it is generally considered a bearish signal,
indicating a downward trend. This is known as a "Death Cross." Death
Cross indicates potential downward momentum and is often seen as a

sell signal.
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i) When Both SMAs are Falling: If both the 50-day and 200-day SMAs

are falling, it suggests a strong downward trend.

There are a few common cases and ways to interpret it as follow:

i) If the 50-day SMA is steadily rising and is above the 200-day SMA:

This indicates a sustained upward trend.

i) If the 50-day SMA crosses above the 200-day SMA (Golden Cross):
This signals a potential bullish trend and may be a good time to

consider buying.

iii) If the 50-day SMA is below the 200-day SMA and both are declining:

This suggests a sustained downward trend.

iv) If the 50-day SMA crosses below the 200-day SMA (Death Cross):
This signals a potential bearish trend and may be a good time to

consider selling.

Figure 3.2 illustrated the example of Death Cross and Golden Cross to be

clearer how the crosses could be identified.
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Figure 3.2. lllustration of Death Cross and Golden Cross in Stock Market Trends
Note: Adapted from Simmons (2018)

8. Return Analysis: Returns over different periods can be used as features to
represent the performance of stocks. This helps the neural network understand

the profitability and growth trends.

9. Frequency Distribution: Creating features based on the frequency distribution
of stock prices can help the neural network understand the overall distribution

and patterns in the data.
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By incorporating these descriptive statistics as features, neural networks can gain a
more comprehensive understanding of the stock market data, leading to better

predictions and analysis.

3.2.3 Boxplot of outlier detection

In this section, an assessment was conducted to determine whether the data exhibited
an outlier problem. The problem of outliers was detected in stock market prediction.
The boxplot method, as suggested by McGrill et al., (1978) was employed to identify
and examine any potential outliers in daily closing prices of FBM KLCI stock market.
Selected order statistics form the basis of the boxplot approach, which is used to
locate outlaying observations. In particular, the technique is based on determining the
data set's sample quartiles, or hinges, and then building outlier fences (a lower fence
and an upper fence). Outliers may occur in the data set if any observations fall outside
(in either direction) of the built fences. The lower and upper fence can be seen in

Figure 3.3.
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Figure 3.3 Example of Box-plot
Note: Adapted from Chinaza (2023)

3.3 Preprocessing

Data preprocessing is required in neural network analysis. This process involves data

normalization and data partitioning.
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3.3.1 Data Normalization

Data normalization is important in order to scale the observed values for better neural
network learning. Data normalization can reduce the amount of time needed for
training by ensuring that each feature is trained on the same scale (Nayak et al., 2014).
There are a lot of methods to do the normalization data such as min-max
normalization median and median absolute deviation, sigmoid normalization, decimal
scaling normalization, z-score normalization, and median normalization. Min-max
normalization was implemented, where the data inputs were mapped into a predefined
range [-1;1]. This technique normalizes the value of the attribute 4 of a data set
according to its minimum and maximum values. It converts a value a of the attribute
A to @ in the range [low; high] (Zhang et al., 2021) by computing:

(high—low)*(a—min A)

maxA—-minA

4 =low + 3.1)

All out-of-sample values below min A and above max A were mapped to low and
high respectively, after considering the minimum, min A, and maximum, max A,

values reported in the sample data set.

3.3.2 Data Partitioning

Based on the research by Sharma et al., (2021), in order to get 100% specificity and
sensibility in neural network, data partitioning is divided into two parts which are
85% training set and 15% testing set. Neural network training sufficient if the real

data involves a large sample size like more than thousands or hundreds (Wei et al.,
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2015). This research split the data into training and testing sets using the ‘iloc’

method by selecting rows based on their index position.

In the context of Python's pandas library, ‘iloc’ stood for "integer location" and was a
method used for accessing and retrieving data from DataFrame objects using integer-
based indexing. The iloc method allowed for the selection of specific rows and
columns from a DataFrame by providing integer indices, enabling data retrieval based

on position rather than label.

The method takes two arguments: the starting index and the ending index of the rows
to be selected. The training set consisted of the rows that fell between the starting and
finishing indexes; the testing set consisted of the remaining rows. The size of the

dataset depends on the percentage of the partitioning.

The two variations of simulated datasets, designated as Data Set I and Data Set II, to
evaluate the model’s performance. The input nodes number was the most fundamental
parameter, as it corresponded to the number of lagged observations used to portray the
time management of underlying pattern (Zhang, 2001). The parameters varied across

levels of 5, 10, 15, 20, 25, 30, 35 and 40 input lags for enhanced BPNN modelling.

For Data Set I and II showed in Table 3.1, all possible combinations of hidden nodes
and input lags were investigated with varying proportions of outliers ranging from

0%, to 65% which extend previously published experiments with such datasets (Ghani
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et al., 2018). The simulated data, which included Data Set I and II, were required to

evaluate the effectiveness of the model.

Table 3.1

Input Lags Outliers Percentage for Enhanced BPNN model on Datasets

No. Data Description Notations Outliers Input Hidden
Lags  Nodes
1 Real Datasets FBM KLCI Stock 62%
Market Closing Prices
2 Simulated Data Set | 0%
1-Dimensional Data
5% 5,
5,
10%, 10,
10
) 3
3 Simulated Data Set I1 e 15,
1-Dimensional Data 20%, 15, 20
25%, 20, ’
0%,
35%, 30,
30,
40%, 35
45%, 35 40,
40
50%, 45
55%,
60%
65%
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Data Set I: To evaluate the algorithm developed for application on FBM KLCI stock
market data, was employed as an approximation task. The function defined in

Equation 3.2 was used to assess several robust algorithms.

A lot of previous studies have applied this function (Liano, 1996; Chen & Jain, 1994;
Chuang, 2020; El-Melegy et al., 2009; Rusiecki, 2005). The independent, x and
dependent variable, y were used to generate the simulated data (Chuang, 2020). The

equation 3.2 defines this function:

y = |x|72/3 (3.2)

where,

x = independent variable,

vy = dependent variable.

The independent variable, x can generate the data points with a step 0.01 and in the

range [-2, 2], and then the dependent variable, y can be determined by Equation 3.2.

Data Set II: The second 1-D function to be approximated was a function considered

in many articles (Chen & Jain, 1994; Chuang et al., 2004) defined as:

y = sin(x) (3.3)
where,
x = independent variable,

y = dependent variable.
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With a 0.1 step, the independent variable was sampled within the interval [-7.5, 7.5].

For clearer, Table 3.2 was presented the simulated dataset for this research study.

Table 3.2

Function for Simulated Dataset

No. Data Type Notation Function

1 Simulated 1 - Dimensional Data Data Set | y = |x|7%/3

2 Simulated 1 - Dimensional Data Data Set I1 )= sin(x)
X

Figure 3.4 shows the connectionist feedforward backpropagation of DPSG-LMedS

model.
Vi
Vi
Y2 ~
— y +m
y t+m
}7 -p

Figure 3.4. Connectionist Feedforward Backpropagation of DPSG-LMedS model

Here y;_1,... ,Yt—p are input values (daily FBM KLCI closing prices data) for

pt"lag. and &_q, &5, ... , E—p are forecast errors for q*" lag and vy, is forecast
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values of FBM KLCI indices as ith-step-ahead, i =1,2,..,m, Table 3.3 exhibits the

variables of input lags.

Table 3.3

Variables of input lags

Time () y, InputLagl InputLag2 InputLag3 ... InputLagp

1 2 - - - - -

2 Y, Vi - - - -

3 Vs Y, Y, - - -

4 V4 Y3 ¥, Y, - -
Y, Vs Y, - -
Vs Y, Y3 - -
Ve Vs Va4 Yy

Ve -
T Y, Yeq Yoo Yes Yiep

Following the data partitioning process, the original FBM KLCI stock market dataset
was systematically divided into two distinct subsets: training and testing. The training
set, comprising 85% of the total sample size, was designed to facilitate the model’s
learning of underlying trends and patterns in stock price movements. The remaining
15% was designated as the testing set, ensuring an evaluation of predictive accuracy
and model generalization. Table 3.4 presents the partitioning tabulation for FBM

KLCI data.
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Table 3.4

Partitioning Tabulation for FBM KLCI Data

Series Part ANN Data Time Actual Fitted  Forecasted
Partitioning (t) values at Values Values
Terms time, t
Model Estimation ~ Training Set 1 Y1 (train) V1 (train) -
Part (85%)
2 Ya(train) Y2(train) -
3 Y3(train) V3 (train) -
y (train) y t(train) Ye(train) -
Model Evaluation ~ Testing Set t+1 Vi1 - V1(forecast)
Part (15%)
t+2 Viso - Y2(forecast)
t+n - - y\n(forecast)

3.4 Backpropagation Neural Network Modelling

Backpropagation Neural Network (BPNN)s have gained significant attention in

various domains, including stock market prediction, due to their ability to learn

complex nonlinear relationships from data (Vargas et al., 2022). The basic structure of

a BPNN consists of an input layer, one or more hidden layers, and an output layer

(Pellegrino et al., 2022).

The backpropagation algorithm uses gradient descent to update the weights and biases

of the network, aiming to minimize the mean squared error between the predicted and
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actual outputs (Zhang et al., 2024). Data splitting, data preprocessing, design and
architecture, training algorithm, and time lags are also important in BPNN model. The
following section has discussed further regarding input layer, hidden layers, and an
output layer, data splitting, data preprocessing, design and architecture, training

algorithm, and time lags.

3.4.1 Input Layer

Input layer in backpropagation neural network (BPNN) is the layer where data is
introduced into the system (Priddy, 2007). In the context of backpropagation, which is
a supervised learning algorithm for training neural networks, the input layer's primary
function is to transmit the input features to the subsequent layers in the network. This
process enables the network to learn and make predictions based on the input data

effectively.

3.4.2 Output Layer

The output layer in a BPNN consists of a hidden layer with 8 neurons and is used to
minimize error between target and output (Primadusi et al., 2016). In BPNN model,

the output layer is the layer with adjustable hidden-to-output weights.

3.4.3 Hidden Nodes

The hidden layer in neural networks is an unobservable layer of nodes that calculate
the weighted sum of their input nodes and pass the sum, adjusted for a bias, to the

next node in the network (Averitt & Natarajan, 2018). Hidden nodes in neural
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networks are randomly generated additive or radial basis function nodes that can work
as universal approximators in incremental extreme learning machines (Huang et al.,
2006). In the research by Uzair and Jamil, in 2020, the different number of layers has

been tested in order to get the most accurate results.

Figure 3.5 illustrates the architecture and computational flow of the neural network
model. The diagram consists of three key layers: the input layer, the hidden layer, and
the output layer. The input layer receives multiple features represent past data points
fed into the network. These inputs are transmitted through weighted connections to
the hidden layer, where neurons process and transform the information using
activation functions. The output layer then generates predictions correspond to future
values based on the model’s learned patterns. The connections between layers signify
the propagation of information, demonstrating how the neural network refines input

data to produce accurate forecasts.

Input layer
Hidden layer
N1
Output layer
Vi
Viz
L Vivm
Ve . Yitm
Vi2

Figure 3.5 Process of Neural Network Model
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3.4.4 Data Preprocessing

Data preprocessing is also one of the steps that is essential in stock market prediction.
It involves cleaning, transforming, and preparing the data to make it suitable for
analysis. In preprocessing data, normalization and feature selection are also involves
in order to improve the accuracy of stock market prediction using neural network

(Ican & Celik, 2017).

3.4.5 Data Splitting

The process of splitting the data is a crucial step in stock market prediction by using
any machine learning model. The data splitting involves dividing the available data
into training, and testing sets. The training set is used to train the model and the

testing set is used to evaluate the model's performance on unseen data.

The research by Shen and Shafiq in 2020, used the splitting of the data into the
training and testing set. The result shows that the system achieves overall high
accuracy for stock market prediction by conducting comprehensive evaluations on
frequently used machine learning models. The previous study also discusses the
importance of splitting the data to train, find the model selection and estimate model

prediction error or accuracy (Kumbure et al., 2022).
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3.4.6 Design and Architecture

The design and architecture for each type of neural network model is different.
Therefore, before the neural network model has been used for analysis, the design of

the neural network model is really needed.

3.4.7 Training Algorithm

Backpropagation is a widely used training algorithm for neural networks. In the
context of stock market prediction, researchers have applied traditional
backpropagation to train neural networks to learn patterns and trends in historical

stock data.

3.4.8 Time Lags

Time lags in neural networks were significant, particularly when processing time-
series data or sequences. Utilizing time series with input vector lags improved the
accuracy of forecasting stock market indices (Surakhi et al., 2021). Hadi (2006)
proposed a methodology for reducing data requirements in hydrological time series
forecasting by employing Box-Jenkins models to identify “lag components” and

developing a compact network structure.

According to Kamaruddin et al. (2019), the study utilized time lags of 5, 10, 15, 20,
25, 30, 35, and 40. The findings indicated that the optimal configuration for the Killer
Whale-Backpropagation (KW-BP) Algorithm was 30-30-30 for input lags, error lags,

and hidden nodes, respectively.
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One previous study by Hsieh et al. (2011) applied a BPNN to predict future stock
prices using various input nodes and found that the number of nodes in the hidden
layer affected the model's convergence efficiency and prediction accuracy. The study
also determined that the optimal configuration for the hidden layer was achieved
when the number of nodes was twice that of the input nodes. Similarly, Utomo et al.
(2017) found that the number of input nodes, the number of hidden layer neurons, and

the number of training iterations were significant factors affecting forecast accuracy.

3.5 Backpropagation Neural Network (BPNN) for Stock Market Prediction

In stock market prediction, BPNNs can handle large-scale data tasks and identify the
patterns that are often present in financial data. This ability makes BPNNs a powerful
tool for predicting future stock prices and market trends. To better understand how
BPNNSs operate, consider the flowchart depicted in Figure 3.6. This figure illustrates
the steps involved in implementing the original BPNN model. It shows the process of

data collection, preprocessing, model determination, training, and validation.
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Figure 3.6. Backpropagation Neural Network

The multilayer perceptron was the main concern.
Step 1: Time Series Input Data

Ve = Xe—1,Xt—-2,"""» Xt—p
where,

y: = input values (daily closing stock market data),

Xe-1,...,Xep = p™ lag input values (daily closing stock market data),

t-p = lags for inputs,
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Step 2: Initialization of random weight from input layer to hidden layer.

i t—hidden 1 on 1
L =4+—y"  — 3.5
a,,B’ —2n a=1 Ixtl ( )

where

a = row connecting hidden nodes with input nodes,

f = column connecting hidden nodes with input nodes,
n = total number of inputs,

y: = inputs of network,

"= vector of weight.

Step 3: Approximate Vi, ,

The formula for autoregressive (AR) model is

Veta = f(yt—l' ""yt—p) + &, (3.6)

becoming
Yera = f(Ve) + & (3.7)

where
y: = actual values (daily closing data of the stock market) at time ¢,
ye+i = stock market data predict values at i"-step-ahead, i= 0,1,2,...m,
Xe1,....Xep = p™ lag input values (daily closing stock market data),
&= the errors of the model at time ¢,
t = time,
f(.) = function of nonlinear.

The expression in equation 3.7 is the approximation of nonlinear to f:

Veva = F(e), (3.8)
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where
P¢+q = the approximated of forecast values at i-step-ahead, i=0, 1, 2, ..., m,
f(.) = the evaluated of nonlinear function at y;
y: = real values (daily closing stock market data) at time ¢,
Step 4: Approximate the output for the first layer. The approximation of the nonlinear
to fis the feedforward network given by
Yi = fLVe-1s e yt—p)

Y= fl(fo:l Wajyt)' (3.9

where

I'ip = An input layer to hidden layer connection's random weight matrix ranges from -
1to1,

f1 = tangent sigmoidal function.

Therefore, nonlinear mapping from pass data to projections of future data is
represented by the feedforward network. Consider the weight matrix of a link between

the output and hidden layers as comparable wgy. Figure 3.7 exhibits the link between

output layer and output.
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Ve 1 input neurons, index I
I
wi;, first synapse, first level
Xjp= ) WiV
i=1
Yi= fi (xj) m hidden neurons, index j
m
B o Wi, second synapse, second level
X = WirYj
Jj=1
Vi = falxp) n output neurons, index k

Figure 3.7. Information Flow in the Forward Path of a Two-Layer Neural Network

Step 5: Define the first synapse which is input to hidden layer activation function,
fQ).

sinh () exp® —exp™®
cosh ()  exp® + exp=0

- z(#p_m) _1 (3.10)

fl(-):

where fiann: R—[-1;1]

Becoming

1
V= tanh(Za:I Wei V1)

1
=2 -1 3.11
<1+exp_2(251=1wajyf)> ( )
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Step 6: Initialization of random weights from hidden to output layer

hldden—output 1 on 1
. =4y
W]_k ~on Z]_lf(z Wg.r;put—»haddenyj) (312)

where,

k = column connecting hidden nodes with input nodes
S = column connecting hidden nodes with input nodes
n = the total number of inputs

yp= the inputs of network

w = the vector weight

f(.) = function of repetitive /linear activation (equal to 1)

Step 7: Find the second synapse's activation function, f{.), which connects the hidden

layer to the output layer.

S2()=10), (3.13)
where fpurelin: R—[-1;1]
becoming
Vi = 1(271_1 Wi ¥;) (3.14)
= 1(x)
= Xy

m
j—1
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Step 8: The output neurons' maximum likelihood estimator, or accumulated error
signal, is calculated by Equation 3.16 after pattern ¢ presentation.

£e = 5 Xiealye — yil? (3.15)
where
& = errors at time ¢,
yi = actual output
Vi = target output.
Step 9: The primary objective is to minimize €. by adjusting the free parameters wgr
and wis. Equation 3.16’s partial derivatives were computed in relation to the weights,
Wpk.

So, for the method illustration, let

Ve — Vi = Vi — Vi (3.16)
Therefore
9 _ 1y _ ) 9k 0%
Bwg = 2 (e = Yi) 54 . (3.17)

T
1
= ?Z(Yk - yg)f’(xk)}’j
t=1

The whole goal is to reduce & by modifying the free parameters wsr and wigs.
Step 10: Calculating the partial derivatives of Equation 3.14 with regard to the

weights wg. 1s necessary to reach the goal. Thus,

der _ 1@r d\ Yk Oxi
aij - TZt:l(yk yk) Oxy aW]'k

= 23 — v )y (3.18)
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The chain-rule was utilized to calculate the partial derivatives in Equation 3.18. Let

8 = (v — ¥ f' (x) (3.19)

According to the chain-rule, if
dy d
y = f(g(x)) then -5 (3.20)

As a result, changing k Jx in Equation 3.19 results in

6£t 1

= = Xt=10Y; (3.21)

aij T

Partial derivatives of f existed because the network was considered to be totally
connected to a set of k. The cumulative gradient of the network's second level

consisted of these derivatives (Equation 3.21), following the flow in Figure 3.8.

_f——{—— -

< 1 input neurons, indexI/>
- m
£ = z Wijai

=1

8 = 1)

n
Sj = Z ijé‘k
k=1

Sk = f'(xx) ex

i d
n output neurons, index k £ = yp — V1

Figure 3.8. Information Flow in the Backward Path of a Two-Layer Neural Network
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Step 11: The partial derivatives of Equation 3.14 with respect to wis are determined in
a similar manner (the network in the first level). The chain-rule is applied twice to

og; 1T n d\ 0yg 0xy 0y Ox;j
9 ,__ = Zk=1(yk_yk)a v: 0x: 0 )
WC{] Xk y] x] Wa]

= 15T 3 0k — YO oW f () e (3.22)

The Equation 3.22 is simplified by substituting the auxiliary term 9, which produces

S ST (B dewsie £ () ]y (3.23)

Owg;j
The Equation 3.23 is simplified by substituting an additional auxiliary term, where

becoming Equation 3.25. This is the first network level in cumulative gradient.

0 1
Twe = 7 2t=15)a (3.25)

Let's consider a single training pattern to describe the backpropagation algorithm. The

outputs y, and y, are computed on the forward path as shown in Figure 3.6. The

level one and level two partial derivatives are represented on the backward route by

the products &,y, and &,y, respectively. In other words, the auxiliary terms &, and

0, [Equations 3.24 and 3.25] implicitly carry error information throughout the

network.

Step 12: Based on the stopping criteria, steps 1 through 13 should be repeated until

the training stops.
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Step 13: Take the NAR model's residuals and add them as additional inputs to the

network.

Step 14: Estimated ¥, .,

Yita = f(J’t—l’ v Ye—pr Ee—15 s gt—q) t &tta (3.26)
Vera = f(j;t—lt ,yt—p' Et—1s ) ét—q) (3.27)
Veva = YVera = F(Ve + &) + €4a (3.28)
Vtra = Veva =FP + &) (3.29)

where

y: = actual values (daily returns stock market data) at time ¢,

Vet Veep = p™ lag input values (daily returns stock market data),
P¢+q = estimated values in forecast at i"-step-ahead, i= 0, 1, 2,...m,
Ye+q = stock market data predict values at i-step-ahead, i=0, 1, 2,...m,
f(.) = the function of nonlinear,

& = the errors values of forecast at time ¢,

;.4 = estimated errors of the model at i"-step-ahead, i =0, 1, 2, ..., m.

Step 15: Same as Step 12.

A normal distribution with a mean of zero is represented as ¢, ~ N (0,0'2) where c*

denotes the variance. The error terms &, were regarded as independent and identically

distributed random variables (iid.). The homoscedasticity assumption or that the error

term variance, 0,2, is constant across the time, is made. Additionally, in each instance
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where E (¢ —1=0), the error terms are uncorrelated, i.e., meaning that there is no
covariance between them. Since there is no correlation between the independent

variables and the error terms, E (5tx = 0) is the covariance. Finally, the error terms

comply with the normality assumption.

3.5.1 Least Median Squares (LMedS)

In this phase, Mean Square Error (MSE) was replaced with LMedS. The process
continued from Step 15 in Phase 1, followed by the subsequent step.
Step 16: Start with a minimal value of med(étz) =0
Step 17: Identify the predicted output value, yx

: 1on 2

€1t = 52k=1[3’a — Vil (3.30)
where, &, is the expected errors at time 7, while y; and y; denoted as predicted and

actual output respectively.

3.5.2 Date Palm Seed Growth Algorithm (DPSG)

DPSG is the metaheuristic algorithm where it is inspired by the growth of date palm
seed. The farmers in the Middle East have their own way so that the roots of palm
trees can be strong and survive in arid and dry soil conditions. This plant can grow in
dry, arid, barren lands, even in lands that are often hit by terrible desert storms. The
strength of the palm tree actually lies in the roots it possesses. That is why this tree is

considered a resilient tree.

63



3.5.3 DPSG-LMedS

The LMedS estimator has low efficiency and is not enough. Therefore, the DPSG
algorithm need to hybrid with LMedS become Date Palm Seed Growth Least Median
Square (DPSG-LMedS), which enhanced the model’s efficiency and accuracy in

predicting the stock market.

The DPSG-LMedS algorithm was developed in this research and is formulated based

on the Pseudo-code presented below.

Date Palm Seed Growth (DPSG)

1. Initialize seed: Create a variable representing the date palm seed.

2. Place seed in soil: Plant the seed in a pot or soil, ensuring it's adequately buried.
3. Initialize stone: Create a variable representing the stone or weight.

4. Place stone on top: Position the stone on the soil surface above the planted seed.
5. Set water and sunlight conditions: Ensure the pot or soil receives appropriate

water and sunlight.

6. While seed is not a tree:

7. If seed receives adequate water and sunlight:

8. Allow time for growth: Let the seed absorb water and sunlight for a
certain duration.

9. Monitor growth conditions: Check if the seed is sprouting or growing.

10. Else:

11. Adjust water and sunlight: Provide more water and sunlight for optimal
growth.

12. End If

13. If the seed's roots are strong enough to lift the stone:

14. Remove the stone: Automatically lift the stone from the soil.

15. End If

16. End While
17. Date palm tree is fully grown.
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Step 18: Find the median of estimated errors at time ¢, DPSG-LMedS into BPNN
model

Emea = med (1) = 3 Yoy Ve — Yi? (3.31)
where,
&1+ = the expected errors at time ¢,
vy, = predicted output,

y; = actual output.

Step 19: Minimize &,,,4 by iterative training until criterion function &,,,4 is below

minimal value in Step 18.
Step 20: If med (&;;) < med(&,), replace med (€,) with med(é;;)

Step 21: Stop training once the stopping criterion is achieved. Keep the current best

value of med(€;)

Step 22: Remove outliers from the current dataset using the best criterion function
value €.q = med(é;) and current robust standard deviation (RSD). After initial
training, RSD is calculated
o, =Tx(1+—=) ¢ (3.32)
r (N—p) med :
where,
Emea = the best achieved LMedS error value,

N = training set size,
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p = the input vector dimension,

1+ = factor to compensate the effect of small sample size.

5
(N-p)

I' = the constant to provide better efficiency for the clean data with Gaussian noise.

Step 23: Retrain the network on the reduced data without outliers, minimizing &,,¢4-

Remove from the training set all patterns associated with residuals exceeding a
threshold based on the RSD

g2 >25x0; (3.33)

Step 24: Stop the network if the network LMedS performance achieved any of the
stopping criteria. Otherwise go to Step 21. After the network stops, the best LMedS

error value, €*,,.4 can be achieved (Mahsereci et al., 2017)

3.5.4 Enhanced BPNN model using DPSG-LMedS
The BPNN model exhibited issues with its estimators, as its cost function was not
entirely robust. Consequently, to address this limitation, the model was enhanced by

minimizing error using the DPSG algorithm and replacing OLS with LMedS.

The process of the enhanced algorithm begins with the initialization of the £*D roots
population and relevant parameters, followed by setting the generation number K=1.
The algorithm then evaluates F; for all individuals and categorizes them into the main-

roots and lateral-roots groups based on sorted F; values.
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Subsequent operations include main-roots regrowth, nutrient adjustment, and main-

roots branching, defined by E = E+ n,. Lateral-roots undergo similar regrowth and

nutrient adjustments, followed by dead-root elimination. Further optimization steps
involve non-dominated sorting, farthest candidate selection, and recording the best
solution. The stop criterion is verified, and if unmet, the generation number
increments by K =K +1, continuing the process until convergence. Figure 3.9
presents a flowchart detailing the steps of an enhanced algorithm aimed at improving

the BPNN model.

Figure 3.9. Contribution of the enhanced algorithm
67



Figure 3.10 provides a clearer depiction of the enhanced BPNN model, highlighting
the contribution of the enhanced algorithm in the MSE calculation process within the

model.

Figure 3.10. Enhanced Backpropagation Neural Network
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3.6 Evaluation of Prediction Model using Error Measure

The models were evaluated by using two types of error measure which are Root Mean
Square Error (RMSE) and Geometric Root Mean Square Error (GRMSE). The details
of the function and formula for both error measures were explained in the next

section.

3.6.1 Root Mean Square Error

Root Mean Square Error (RMSE) is used to explain how tightly the data is clustered
around the line of best fit (Cinembiri et al., 2023). The error measure or the standard
criterion also known as RMSE is used by mean experts that frequently used to
compare to the model's anticipated performance and to assess a model's applicability
to a particular set of data (Kantz & Schreiber, 2004). The RMSE can be calculated by

using equation 3.34.

1 ~\2
RMSE = \/; (v -1) (3.34)

where,
n = the number of predictions,
Y, = the forecasted value at interval ¢,

Y; = the actual value at interval 7.

The model that gives the smallest value in RMSE is a fit model to forecasting.
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3.6.2 Geometric Root Mean Square Error

Geometric Root Mean Square Error (GRMSE) serves as a method for addressing the
issue of outliers, which often impacts the precision of error measurements, especially
when dealing with a notably large error term resulting from an inaccurate forecast
(Domanski & Wieclawski, 2015; Kolassa, 2016). The GRMSE can be defined as

follows:

1

GRMSE = (TT¢[Y, - %.]° )" (3.35)
where,
n = the number of predictions,
Y, = the forecasted value at interval ¢,
Y, = the actual value at interval 7.
It is common for forecasters to utilize multiple error measures to ensure the
consistency and accuracy of the result in evaluation. Table 3.5 presented a summary
of the error measures that were used to assess the performance of each model and to

select the best model.

Table 3.5

Error Measures to Assess the Forecasting Model Performance

No. Error Measures Notation Formula

1. Root Mean Square Error RMSE

2. Geometric Root Mean Square Error  GRMSE n o

*Remark: The least error measures values are the best model
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3.7 Convergence Test

In this section, the research used convergence test to validate the proposed algorithm
of DPSG-LMedS. Convergence test is a common technique to validate an algorithm
as suggested (Mutinda & Geletu, 2025). Based on the learning curve that be analyzed,
the value of RMSE from each lag were tested with the maximum number of epochs is
1000. In a converging learning curve, the RMSE value decreased steadily as the
number of epochs increased. Eventually, the RMSE stabilized, indicating that the
model had learned the underlying patterns in the data and that further training did not

significantly improve performance.

Figure 3.11 illustrates an example of a convergent model.

Figure 3.11. Example of Convergence Result
Note: Adapted from Song et al. (2022)
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3.8 Summary

This chapter presented the methodology implemented for the study. The first phase
encompassed preprocessing steps, including data scraping and diagnostic tests. In the
second phase, an enhanced BPNN model was developed for FBM KLCI dataset. The
performance of both the ordinary and enhanced models was evaluated using
simulation data and FBM KLCI datasets. Subsequently, error measures specifically
RMSE and GRMSE were employed to select the optimal model. The final phase

involved validating the model and conducting forecasting on the dataset.
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CHAPTER 4
DATA ANALYSIS AND DISCUSSION

4.1 Introduction

This part explains the result from the analysis of the backpropagation neural network
(BPNN). The chapter is divided into five sections, which respect to the four objectives
of the study. The data background explained in Section 4.2. The first objective was to
identify the severity of outliers’ problems of Financial Times Stock Exchange (FTSE)
Bursa Malaysia Kuala Lumpur Composite Index (FBM KLCI) dataset identified
based on the analysis in Section 4.3 Diagnostic Test. In Section 4.3, the test for
outliers problem was discussed. In order to achieve the second objective which is to
evaluate the performance of the ordinary models on real FBM KLCI dataset which
consist of outliers’ problems, Section 4.4 presented the numerical comparisons of
both the BPNN model and Enhanced BPNN models, where their performance was
evaluated on a real dataset. The third objective is to develop an enhanced BPNN for
FBM KLCI dataset with outliers’ problems. Therefore, to fulfill the third objective,
Section 4.5 tested the enhanced BPNN on Simulated Dataset. After the enhanced
BPNN model was tested, forecasting on the FBM KLCI stock market dataset was
conducted for three-step ahead in Section 4.6. Last but not least, Section 4.7 shows
the convergence test to validate the enhanced BPNN model to answer the fourth
objective which is to validate the enhanced BPNN using time series bootstrap

technique. In Section 4.8, the summary of this chapter has been done.
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4.2 Descriptive Analysis

The data background used in this research was the FBM KLCI dataset, which was
retrieved from Yahoo Finance. The data that was scraped using Python code in
Spyder Software has been cleaning and proceeded to diagnostic test, performance

comparison, forecasting and convergence test.

Figure 4.1 illustrated the closing prices of FBM KLCI from 2" January 2018 to 30®
December 2022. Between 2018 and early 2020, a general decline in closing prices
was observed. In early 2020, a sharp drop occurred, followed by a recovery and
subsequent fluctuations until the end of the year 2022. This significant decline was
likely attributable to major market events, such as the onset of the COVID-19
pandemic, which resulted in substantial market volatility and losses. Following the
sharp drop, the closing prices recovered and exhibited fluctuations, indicating that the

market had begun to stabilize after the initial shock.

Figure 4.1. FBM KLCI stock market closing prices from 2" January 2018 to 30"

December 2022
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Table 4.1 presented the results of descriptive statistics, including the mean price,
median price, standard deviation, variance, minimum price, maximum price,
skewness, and kurtosis. The mean price indicated that the average closing price was
1,598.29. Additionally, the median price of 1,588.08 suggested that half of the closing
prices were below 1,588.08 and half were above this value. The stock prices typically
deviated from the mean by 119.64636, with a higher standard deviation signifying

greater volatility and a higher variance indicating a wider spread of stock prices.

Furthermore, the lowest and highest closing prices within the specified period were
1,219.72 and 1,895.18, respectively. The positive skewness of 0.36615 implied a
slight right skew in the distribution of stock prices, suggesting a greater occurrence of
higher prices. Lastly, the kurtosis value of 0.12583 indicated that the distribution of
stock prices had slightly heavier tails compared to a normal distribution, signifying a

moderate presence of extreme values.

Table 4.1

Descriptive Statistics for FBM KLCI data

Descriptive Statistics Value

Mean Price 1598.29
Median Price 1588.08
Standard Deviation 119.64636
Variance 14315.25142
Minimum Price 1219.72

75



Table 4.1 (Continued)

Descriptive Statistics for FBM KLCI data

Descriptive Statistics Value

Maximum Price 1895.18
Skewness 0.36615
Kurtosis 0.12583

Figure 4.2 illustrate the plot graph with a line of 50-day and 200-day simple moving
average (SMA). It shows that there is 2 Golden Cross (GC) and 2 Death Cross (DC).
Moreover, the stock price shows the sustained downward start from 2018 until mid-
year 2020. Then, the price shows a sign of a good time to consider buying and after
mid-year 2021 it shows a sign of a good time to consider selling until early year 2022.
After that, it gave a sign to consider buying again until mid-year 2022 and it start

shows the sustained downward trend until end year 2022.

Golden Cross

Death Cross

Figure 4.2. 50-day and 200-day Simple Moving Average
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Figure 4.3 illustrated the daily return of the FBM KLCI stock market and bands at
+119.64636 standard deviation. Around the beginning of 2020, a notable spike was
observed, where the daily return value sharply increased before declining
significantly. This spike likely indicated a major market event or anomaly during that
period, potentially related to global events such as the COVID-19 pandemic, which
had a substantial impact on financial markets. The plot revealed periods of increased
volatility, during which the daily returns fluctuated more widely. These periods may
have corresponded to market turbulence, economic news, or other factors influencing
the asset's price. The remainder of the plot displayed relatively smaller fluctuations in

daily returns, suggesting periods of more stable market conditions.

Figure 4.3. Daily return of FBM KLCI and bands at + 119.64636 standard deviation
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Figure 4.4 illustrates the subset splitting process applied to the FBM KLCI stock
market closing prices. The dataset was divided into training and testing sets, with an
allocation ratio of 85% and 15%, respectively. The training set encompasses the
majority of historical data, ensuring that the model learns from extensive market
fluctuations and trends. Meanwhile, the testing set provides a dedicated portion for
evaluating predictive performance, assessing the model’s ability to generalize to
unseen data. This structured division is crucial for improving forecasting accuracy in

financial modeling.

Figure 4.4. Subset splitting for FBM KLCI stock market closing prices
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Table 4.2 presents a comprehensive breakdown of the total sample size (N) and the
partitioning of data for training and testing across different data types. The table
categorizes the datasets into distinct groups, specifying the number of samples
allocated for training and testing. The training set comprises 85% of the total dataset,
ensuring that the model learns patterns effectively, while the remaining 15% is

designated for testing to evaluate predictive performance.

Table 4.2

Data Partitioning for Training and Testing Sets for FBM KLCI data

No. Data Type Total Sample Training Testing
Size (N) (85%) (15%)
1 Real Dataset (FBM 1222 1039 183
KLCI Stock Market
Closing Prices)
2 Simulated 2000 1500 300
1-Dimensional Data
(Data Set I)
3 Simulated 2000 1500 300
1-Dimensional Data
(Data Set II)

4.3 Outliers Detection

In order to achieve a first objective, Section 4.3 was completed, where a diagnostic
test was analyzed to check whether the outliers problems existed in the FBM KLCI

stock market data.
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The outliers of FBM KLCI stock prices were identified using box plot as suggested by
Shehadeh et al., (2022). This research was tested the outliers using Python code for
different number of lags which is 5, 10, 20, 30, 40 and 50. Based on Figure 4.5, it is
clearly seen that the boxplot for each lags has some outliers in the closing price data.
All the boxplot from each lag is normal. However, based on Table 4.3, the percentage
of outliers from lag 40 and lag 50 have more outliers compared to the first four lags. It

shows that the outliers that up to 65% outliers exist at lag 40 and lag 50.

Figure 4.5. Outliers which exist in FBM KLCI Stock Prices for different lags
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Table 4.3

Percentage of outliers for different lags of FBM KLCI Dataset

No. of lags No. of Outliers Outlier (%)
5 7000 57.33%
10 7000 57.33%
20 7000 57.33%
30 7000 57.33%
40 8010 65.52%
50 8010 65.52%

4.4 Performance Comparisons for three models

To accomplish the second objective, the real FBM KLCI dataset was analyzed by
measuring the Root Mean Square Error (RMSE) and Geometric Root Mean Square
Error (GRMSE) with different input lags and hidden nodes using three models which
is BPNN model, BPNN with LMedS model and Enhanced BPNN models. The

enhanced model by run the coding as written in Appendix A.

Referring to Appendix B, Table 4.4 was simplified and compared the three model,
BPNN model, BPNN with LMedS model and Enhanced BPNN models using FBM
KLCI stock market closing price dataset. The results show that the enhanced BPNN
model produced the smallest value of RMSE and GRMSE compared to ordinary
BPNN model. Based on the configuration from the result of RMSE and GRMSE, it
shows that the performance of the enhanced model is the best when used with the
higher number of input lags and the lower number of hidden nodes.
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Table 4.4
Comparisons of RMSE and GRMSE value for Three Different Models using FBM

KLCI Stock Market Closing Price Dataset

Type of RMSE GRMSE
Model
Training Testing Training Testing

BPNN ) 633592 (40-5)  0.464590 (30-25)  1.60661 (40-5)  1.455309 (30-25)

BPNN with
LMedS 0.553211 (40-5) 0.461132(15-20) 1.516604 (35-5) 1.447603 (25-20)

Enhanced
BPNN 0.521857 (35-5)  0.454544 (20-10) 1.477958 (35-5) 1.441731 (20-10)

Note: number in bracket () is the configuration number

4.5 Enhanced Backpropagation Neural Network on Simulated Dataset

This research enhanced the backpropagation neural network (BPNN) by replacing the
Mean Square Error (MSE) with Least Median Square (LMedS). Moreover, the
enhanced BPNN was further enhanced by combining the BPNN model with a
metaheuristic algorithm which was the Date Palm Seed Growth Algorithm (DPSG)
algorithm. Therefore, the model was renamed as DPSG-LMedS. Then, the simulation

was done after enhancing the BPNN model.

The evaluation on the enhanced model has compared the RMSE and GRMSE value
from each input lag and hidden node using the Simulated Data Set I and Simulated
Data Set II. Based on RMSE and GRMSE value, Appendix C and E presents the
result of the enhanced model performance that was tested on Simulated Data Set 1.

The enhanced model performance was compared with the different number of outliers
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percentages (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%

and 65%), lags input and hidden nodes.

Based on Table 4.5, the smallest value of RMSE and GRMSE were at 65% of outliers
where the value was 0.309335 (20-10) and 1.300325 (20-5) respectively. Based on the

performance of the enhanced model checking, the best configuration shows the

smaller number of hidden nodes and the average number of input lags.

Table 4.5

The comparison of RMSE and GRMSE value in the training phase using Data Set 1

Outliers (%) RMSE GRMSE
0 0.39221 (5-25) 1.365482 (25-5)
5 0.373162 (5-5) 1.346845 (5-5)
10 0.429335 (35-10) 1.416202 (35-10)
15 0.424814 (40-10) 1.410276 (40-10)
20 0.42305 (10-5) 1.407287 (10-5)
25 0.338947 (20-5) 1.304435 (20-5)
30 0.386238 (35-5) 1.354567 (25-25)
35 0.438536 (35-10) 1.383593 (10-15)
40 0.379449 (40-5) 1.374507 (15-5)
45 0.375665 (10-5) 1.353026 (20-5)
50 0.373053 (40-5) 1.376593 (5-30)
55 0.354103 (40-5) 1.325635 (15-5)
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Table 4.5 (continued)

The comparison of RMSE and GRMSE value in the training phase using Data Set |

Outliers (%) RMSE GRMSE

60 0.365543 (10-5) 1.404695 (20-30)

65 0.309335 (20-10) 1.300325 (20-5)

Note: number in bracket () is the configuration number

Meanwhile, Appendix D and F analyzed in the testing phase using Simulated Data
Set I to obtain the RMSE and GRMSE value respectively. Table 4.6 presents the
smallest value of RMSE and GRMSE from a different number of outliers based on the

testing phase using Simulated Data Set I.

However, in the testing phase, the smallest value of RMSE and GRMSE were at the

25% of outliers where the values were 0.320704 (20-5) and 1.257188 (20-5)

respectively.

Table 4.6

The comparison of RMSE and GRMSE value in the testing phase using Data Set 1

Outliers (%) RMSE GRMSE
0 0.524275 (35-20) 1.491123 (35-35)
5 0.35629 (5-5) 1.294195 (5-5)
10 0.515865 (15-20) 1.489631 (15-20)
15 0.509376 (40,10) 1.480423 (40-10)
20 0.518792 (25-5) 1.493716 (25-5)
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Table 4.6 (continued)

The comparison of RMSE and GRMSE value in the testing phase using Data Set |

Outliers (%) RMSE GRMSE
25 0.320704 (20-5) 1.257188 (20-5)
30 0.371707 (20-5) 1.310897 (20-5)
35 0.529537 (25-35) 1.500245 (25-5)
40 0.519956 (10-5) 1.474956 (25-10)
45 0.540243 (30-5) 1.502453 (5-20)
50 0.35629 (15-5) 1.497732 (35-25)
55 0.370807 (20-5) 1.504534 (20-5)
60 0.330891 (15-5) 1.432913 (30-10)
65 0.349321 (15-5) 1.326747 (20-5)

Note: number in bracket () is the configuration number

Meanwhile, Appendix G and I shows the RMSE and GRMSE value based on
Simulated Data Set II in the training phase. Table 4.7 simplifies the result from
Appendix G and I to present the smallest value of RMSE and GRMSE from different
number of outliers based on the training phase using Simulated Data Set II. However,
in the training phase, the smallest value of RMSE and GRMSE were at the 65% of

outliers where the value was 0.211321 (30-35) and 1.030024 (20-20) respectively.
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Table 4.7

The comparison of RMSE and GRMSE value in the training phase using Data Set 11

Outliers (%) RMSE GRMSE

0

0.287707 (15-15)

1.207665 (10-5)

5 0.288416 (30-10) 1.278256 (30-10)
10 0.288307 (35-15) 1.277456 (15-20)
15 0.262842 (15-5) 1.248533 (15-5)
20 0.274904 (40-25) 1.261456 (40-25)
25 0.284321 (25-5) 1.253568 (30-30)
30 0.285432 (30-15) 1.204543 (35-20)
35 0.285009 (25-10) 1.235035 (15-35)
40 0.25421 (25-45) 1.272884 (30-10)
45 0.254032 (20-45) 1.211343 (40-20)
50 0.261945 (5-30) 1.235336 (20-10)
55 0.244938 (35-10) 1.209454 (25-15)
60 0.265741 (40-45) 1.261456 (5-30)
65 0.211321 (30-35) 1.030024 (20-20)

Note: number in bracket () is the configuration number

Moreover, Appendix H and I show the RMSE and GRMSE value based on
Simulated Data Set II in the testing phase. Table 4.8 presents the smallest value of
RMSE and GRMSE from a different number of outliers based on the testing phase

using Simulated Data Set II. However, in the testing phase, the smallest value of
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RMSE and GRMSE were 0.2903942 (15-5) at the 65% of outliers and 1.2150944 (30-

5) at the 10% of outliers respectively.

Table 4.8

The comparison of RMSE and GRMSE value in the testing phase using Data Set 11

Outliers (%)

RMSE

GRMSE

0

5

10

15

20

25

30

85

40

45

50

55

60

65

0.303667 (10-5)
0.322399 (40-5)
0.313086 (35-5)
0.318456 (15-5)
0.322231 (5-5)
0.628105 (25-5)
0.322814 (10-5)
0.3125483 (25-5)
0.32102493 (10-5)
0.3395302 (5-5)
0.32139472 (30-5)
0.31940845 (5-5)
0.32193024 (20-5)

0.2903942 (15-5)

1.341769 (5-20)
1.2222512 (35-5)
1.2150944 (30-5)
1.2207208 (10-5)
1.226402 (35-5)
1.5509367 (25-5)
1.3063653 (5-5)
1.32419367 (10-5)
1.5487746 (5-5)
1.5596397 (35-5)
1.5421367 (15-5)
1.5594327 (40-5)
1.5509367 (30-5)

1.5829787 (40-5)

Note: number in bracket () is the configuration number

87



4.6 Convergence Test

The convergence test was conducted after the BPNN model had been enhanced. This
research tests each lag to identify the number of epochs that were more suitable for
this validation test. Appendix K shows the results of convergence test for each lag

that was tested for a maximum number of epochs 1000.

Based on Figure 4.6, the convergence test value for the enhanced model was
illustrated using the line graph. It is clearly seen that lag 25 shows better convergence
compared to other lags. Furthermore, the best performance of the enhanced model

shows at epoch 100 which is at lag 25.

0.64
0.62
0.6
—Lag 5
| ag 10
S 058
g Lag 15
= 0.56
e— | 3g 25
Lag 30
0.54
e—| ag 35
— | 2 40
0.52
0.5

100 200 300 400 500 600 700 800 900 1000
Epoch

Figure 4.6. Convergence Test from different epoch
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4.7 Forecasting

The final step in this analysis involved forecasting. The forecasting method
implemented was a 3-step-ahead approach, in which the FBM KLCI datasets were
analyzed using three models: BPNN, BPNN with LMedS, and the enhanced BPNN
model. As suggested by Cheng et al. (2023), the purpose of using the 3-step-ahead
prediction is to estimate the next three data points in a sequence, providing better
insights into future trends and potentially enabling more accurate long-term
predictions. These models were evaluated to determine the accuracy of the results in

comparison to the actual value of the FBM KLCI stock market.

Each model generated three-step-ahead forecasts, which were subsequently compared
to the actual closing prices. Table 4.9 demonstrated that the three-step-ahead values
from the enhanced BPNN model were closer to the real values. This finding indicated
that the enhanced BPNN model was more accurate compared to the BPNN model and

the BPNN with LMedS model.

Table 4.9

Prediction [-step ahead, 2-step ahead, and 3-step ahead

Model 1-step ahead 2-step ahead 3-step ahead
BPNN 1496.66 1496.42 1497.92
BPNN with LMedS 1495.06 1495.67 1497.69
Enhanced BPNN 1494.66 1496.63 1497.66
Real Value 1487.26 1483.38 1473.91
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4.8 Summary

This chapter presented the data analysis and discussion that addressed all of the
study's objectives. The first objective was fulfilled by identifying the severity of the
outlier problem. Next, an enhanced BPNN model for FBM KLCI stock market was
developed. Subsequently, the performance comparison of the enhanced with the
ordinary BPNN model and BPNN-LMedS model were applied to FBM KLCI data
and be conducted using RMSE and GRMSE to determine the model with the smallest
error value. Thereafter, the reliability of the enhanced BPNN model were analyzed

with varying numbers of epochs.
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CHAPTER S
CONCLUSION

5.1 Review Summary

This part explained the result from the analysis of the backpropagation neural network
(BPNN). There are four sections which is diagnostic test, comparison of both BPNN
model and Enhanced BPNN model using the real dataset, FTSE Bursa Malaysia
Kuala Lumpur Composite Index (FBM KLCI) stock market data and last but not least,

the convergence test was tested using the different number of epochs.

Based on the first objective, which was to identify the severity of outliers problems in
the FBM KLCI dataset, was achieved. This research identifies that outliers exist in the
closing price from FBM KLCI stock market. Based on the test of outliers, this
research clearly seen that the outliers exist more in lag 40 and lag 50. Moreover, the
highest percentage of the outliers got up to 65%, it shows that the enhanced model is
really needed since based on the previous study, the BPNN model can only cater the

outliers problem up to 50% of outliers only.

In order to evaluate the performance of the ordinary and enhanced model on real FBM
KLCI dataset which contained outliers problems, a numerical comparison of the
BPNN model and enhanced BPNN model was conducted on the real FBM KLCI
dataset. The result shows that the RMSE and GRMSE value got the smallest value by
using the enhanced BPNN model compared to ordinary BPNN model with the higher

number of input lags and the lower number of hidden nodes. Furthermore, the best
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configuration in training and testing phase by using the BPNN model is 40-5 and 30-
25 respectively. This research achieved the third objective, which was to develop an
enhanced BPNN model for FBM KLCI dataset with outliers problems. The best

configuration in training and testing phase is 35-5 and 20-10 respectively.

Furthermore, the result shows that smallest value based on the performance evaluation
of the enhanced BPNN model using Simulated Data Set I was at 65% of outliers
where the value of RMSE and GRMSE were 0.309335 (20-10) and 1.300325 (20-5)
respectively. Based on the performance of the enhanced BPNN model checking, the
best configuration shows the average number of input lags and the smaller number of
hidden nodes. The evaluation by using Simulated Data Set I got the smallest value of
RMSE and GRMSE at the 65% of outliers where the value was 0.211321 (30-35) and

1.030024 (20-20) respectively.

The last objective, which was to validate the enhanced model using time series
bootstrap technique was achieved. Lastly, in the convergence test, the lag that shows

the better convergence compared to other lags is lag 25.

The improved BPNN model is designed to reduce network errors by effectively
handling outliers, which in turn boosts prediction accuracy. This makes the study
highly valuable for a range of stock market participants. By using this enhanced
model, both investors and speculators stand to benefit through more accurate
predictions, potentially leading to higher profits. With the model’s optimization,

investors can make better-informed decisions about stock prices and market trends,
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increasing their chances of making profitable trades using the enhanced BPNN model

with two-layer of 20-20 configurations.

Overall, all the objectives were successfully achieved. This model was expected to
assist investors, economists, policymakers, and financial institutions in their

forecasting activities with high accuracy.

5.2 Limitation

In this study, focus was exclusively placed on the Malaysian stock market,
specifically the FBM KLCI index and only closing prices were used as input
variables. Furthermore, during the backpropagation training process, OLS estimators
were replaced with LMedS estimators due to their ability to effectively address issues
related to outliers. Consequently, the enhanced BPNN model was utilized to forecast
the closing prices of the FBM KLCI. Model performance was evaluated using Root
Mean Squared Error (RMSE) and Geometric Root Mean Square Error (GRMSE) as

CIror measurcs.

5.3 Recommendation

Based on the findings of this study, future research will incorporate data from
multiple stock markets to analyze model performance and determine the optimal
configuration. Additionally, further refinement of the enhanced BPNN model was
recommended, either through the integration of alternative metaheuristic algorithms

or by modifying the function to enhance performance.
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Moreover, the performance of the enhanced BPNN model using existing
metaheuristic algorithms such as Particle Swarm Optimization (PSO) as suggested by
(Li et al., 2021), will be compared to the DPSG-LMedS BPNN model in the future

research work.

94



REFERENCES

Abdoli, G., Mohsen, M., & Ardalani, M. E. (2020). Comparing the Prediction
Accuracy of LSTM and ARIMA Models for Time-Series with Permanent
Fluctuation. SSRN Electronic Journal, 9. https://doi.org/10.2139/ssrn.3612487

Agnieszka, D., & Magdalena, L. (2018, September 1). Detection of outliers in the
financial time series using ARIMA models.
https://doi.org/10.1109/PTZE.2018.8503260

Ahmed Mohammed Gamal, A., Algadasi, A., Ramli, N., Viswanathan, Kk., &
Kuperan Viswanathan, K. (2021). The Impact of COVID-19 on the Malaysian
Stock Market: Evidence from an Autoregressive Distributed Lag Bound
Testing Approach*. Journal of Asian Finance, 8(7).
https://doi.org/10.13106/jateb.2021.vol8.n07.0001

Akerstrom, E. (2020). Real-time Outlier Detection using Unbounded Data Streaming
and Machine Learning (Master Thesis). Luled University of Technology.

Al-Mashhadani, A. F. Shahatha., Hishan, S. S., Awang, H., & Alezabi, K. A. A.
(2021). Forecasting Malaysian Stock Price using Artificial Neural Networks
(ANN). Journal of Contemporary Issues in Business and Government, 27(1).

Anis, 1., & Bahar, A. (2021). Analysis Of the Bursa Malaysia Stock Prices and
Forecasting. Proceedings of Science and Mathematics, 2, 107-117.

Ashour, M. A. H., Jamal, A., & Helmi, R. A. A. (2018). Effectiveness of Artificial

Neural Networks in Solving Financial Time Series. International Journal of

95


https://doi.org/10.2139/ssrn.3612487
https://doi.org/10.1109/PTZE.2018.8503260

Engineering & Technology, 7(4.11), 99.
https://doi.org/10.14419/ijet.v7i4.11.20783

Askari, Q., Younas, ., & Saeed, M. (2020). Political Optimizer: A novel socio-
inspired meta-heuristic for global optimization. Knowledge-Based Systems,
195, 105709. https://doi.org/10.1016/j.knosys.2020.105709

Averitt, A. J., & Natarajan, K. (2018). Going Deep: The Role of Neural Networks for
Renal Survival and Beyond. Kidney International Reports, 3(2), 242-243.
https://doi.org/10.1016/j.ekir.2017.12.006

Awajan, A. M., Ismail, M. T., & AL Wadi, S. (2018). Improving forecasting accuracy
for stock market data using EMD-HW bagging. PLOS ONE, 13(7), €0199582.
https://doi.org/10.1371/journal.pone.0199582

Azura Md Ghani, N., Bin Ahmad Kamaruddin, S., Musirin, 1., & Hashim, H. (2018).
Results of Fitted Neural Network Models on Malaysian Aggregate Dataset.
Bulletin of Electrical = Engineering and Informatics, 7(2), 272-278.
https://doi.org/10.11591/eei.v7i2.1177

Bakar, N. M. A., & Midi, H. (2019). The Applications of Robust Estimation in Fixed
Effect Panel Data Model. In Ist Aceh Global Conference (AGC 2018), 341—
346.

Basuony, M. A. K., Bouaddi, M., Ali, H., & EmadEldeen, R. (2021). The effect of
COVID-19 pandemic on global stock markets: Return, volatility, and bad state
probability dynamics. Journal of Public Affairs.
https://doi.org/10.1002/pa.2761

Beliakov, G., Kelarev, A., & Yearwood, J. (2011). Robust artificial neural networks

96


https://doi.org/10.1016/j.ekir.2017.12.006
https://doi.org/10.1371/journal.pone.0199582
https://doi.org/10.11591/eei.v7i2.1177
https://doi.org/10.1002/pa.2761

and outlier detection. Technical report.

Bergmeir, C., Hyndman, Rob J., & Benitez, Jos¢ M. (2016). Bagging exponential
smoothing methods using STL decomposition and Box—Cox transformation.
International Journal of Forecasting, 32(2), 303-312.
https://doi.org/10.1016/j.1jforecast.2015.07.002

BERNAMA. (2024). Ringgit terus merosot susulan kurang pemangkin baharu.
Retrieved from BH Online website:
https://www.bharian.com.my/bisnes/pasaran/2024/01/1200651/ringgit-terus-
merosot-susulan-kurang-pemangkin-baharu#google vignette

Bhardwaj, S., Chandrasekhar, E., Padiyar, P., & Gadre, V. M. (2020). A comparative
study of wavelet-based ANN and classical techniques for geophysical time-
series  forecasting.  Computers &  Geosciences, 138, 104461.

https://doi.org/10.1016/j.cageo.2020.104461

Bhasin, P., & Vaishali. (2017). Back Propogation Algorithm: An Artificial Neural
Network Approach. [International Journal of Engineering Research &

Technology (IJERT), 5(10). ICCCS - 2017 Conference Proceedings.

Bing, Y., Hao, J. K., & Zhang, S. C. (2012). Stock Market Prediction Using Artificial
Neural Networks. Advanced Engineering Forum, 6-7, 1055-1060.

https://doi.org/10.4028/www.scientific.net/aef.6-7.1055

Blazquez-Garcia, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A Review on
Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys,

54(3), 1-33. https://doi.org/10.1145/3444690
97


https://doi.org/10.1016/j.ijforecast.2015.07.002
https://www.bharian.com.my/bisnes/pasaran/2024/01/1200651/ringgit-terus-merosot-susulan-kurang-pemangkin-baharu#google_vignette
https://www.bharian.com.my/bisnes/pasaran/2024/01/1200651/ringgit-terus-merosot-susulan-kurang-pemangkin-baharu#google_vignette
https://doi.org/10.4028/www.scientific.net/aef.6-7.1055
https://doi.org/10.1145/3444690

Boadi, 1., & Amegbe, H. (2017). The Link between Quality of Governance and Stock
Market Performance: International Level Evidence. European Journal of
Government and Economics, 6(1), 78-101.
https://doi.org/10.17979/ejge.2017.6.1.4324

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series
Analysis: Forecasting and Control. John Wiley & Sons.

Brunel, A., Mazza, D., & Pagani, M. (2019). Backpropagation in the simply typed
lambda-calculus with linear negation. Proceedings of the ACM on
Programming Languages, 4(POPL), 1-27. https://doi.org/10.1145/3371132

Bursamalaysia, A. (2023). Bursa PLCs IR Series 3: Economic Outlook 2024.
Retrieved July 10, 2024, from www.bursamalaysia.com website:
https://www.bursamalaysia.com/reference
/irduprogram/recent _events/bursa-plcs-ir-series-3-economic-outlook-2024

Chan, J. Y.-L., Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z.-
W., & Chen, Y.-L. (2022). Mitigating the Multicollinearity Problem and Its
Machine Learning Approach: A Review. Mathematics, 10(8), 1283.
https://doi.org/10.3390/math10081283

Chen, C.-H., Chen, P.-Y., & Chun-Wei Lin, J. (2022). An Ensemble Classifier for
Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and
Technical Indicators. International Journal of Interactive Multimedia and

Artificial Intelligence, 7(3), 53. https://doi.org/10.9781/ijimai.2022.02.004

Chen, J., Dai, H., Wang, S., & Liu, C. (2024). Improving Accuracy and Efficiency in

Time Series Forecasting with an Optimized Transformer Model. 32(1), 1-11.
98


https://doi.org/10.17979/ejge.2017.6.1.4324
https://doi.org/10.1145/3371132
https://doi.org/10.3390/math10081283
https://doi.org/10.9781/ijimai.2022.02.004

Chen, Y.-C., Kuo, S.-M., Liu, Y., Wu, Z., & Nasir, M. (2022). Improving Returns on
Strategy Decisions through Integration of Neural Networks for the Valuation
of Asset Pricing: The Case of Taiwanese Stock. International Journal

Financial Studies, 10(4), 99. https://doi.org/10.3390/1jfs10040099

Cheng, J., Huang, K., & Zheng, Z. (2023). Fitting Imbalanced Uncertainties in Multi-
output Time Series Forecasting. ACM Transactions on Knowledge Discovery

from Data, 17(7), 1-23. https://doi.org/10.1145/3584704

Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial
neural networks, support vector machines, and long—short term memory
for stock market prediction. Decision Analytics Journal, 2, 100015.

https://doi.org/10.1016/j.dajour.2021.100015

Chinaza, E. E. (Ed.). (2024, February 28). Descriptive Analysis with Python. Medium;
Medium. https://medium.com/@isrealemmanuel1025/descriptive-analysis-

with-python-585abe5da6cb

Chinembiri, T. S., Mutanga, O., & Dube, T. (2023). Hierarchical Bayesian
geostatistics for C stock prediction in disturbed plantation forest in Zimbabwe.
Ecological Informatics, 73, 101934.
https://doi.org/10.1016/j.ecoinf.2022.101934

Chuan, T. B., Hameed, Dr. V. A., & Ramachandiran, C. R. (2021). Malaysia stock
market prediction using artificial intelligence. Journal of Applied Technology
and Innovation, 5(1), 32.

99


https://doi.org/10.3390/ijfs10040099
https://doi.org/10.1145/3584704
https://doi.org/10.1016/j.dajour.2021.100015
https://medium.com/@isrealemmanuel1025/descriptive-analysis-with-python-585abe5da6cb
https://medium.com/@isrealemmanuel1025/descriptive-analysis-with-python-585abe5da6cb
https://doi.org/10.1016/j.ecoinf.2022.101934

Dahal, K. R., Pokhrel, N. R., Gaire, S., Mahatara, S., Joshi, R. P., Gupta, A., Banjade,
H. R., & Joshi, J. (2023). A comparative study on effect of news sentiment on
stock price prediction with deep learning architecture. PLOS ONE, 18(4),
€0284695. https://doi.org/10.1371/journal.pone.0284695

Daniel, F. (2019). Solve the Outlier in Multiplication Linear Regression Models with
Robust’s Regression Method Least Median of Squares (LMS) Estimator.
BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 13(3), 145-156.
https://doi.org/10.30598/barekengvol13iss3pp145-156ar884

Dantas, T. M., & Cyrino Oliveira, F. L. (2018). Improving time series forecasting: An
approach combining bootstrap aggregation, clusters and exponential
smoothing. International Journal of Forecasting, 34(4), 7T48-761.
https://doi.org/10.1016/j.ijforecast.2018.05.006

Daradkeh, M. K. (2022). A Hybrid Data Analytics Framework with Sentiment
Convergence and Multi-Feature Fusion for Stock Trend Prediction.
Electronics, 11(2), 250. https://doi.org/10.3390/electronics11020250

de Souza Barbosa, A., da Silva, M. C. B. C., da Silva, L. B., Morioka, S. N., & de
Souza, V. F. (2023). Integration of Environmental, Social, and Governance
(ESG) criteria: their impacts on corporate sustainability performance.
Humanities and Social Sciences Communications, 10(1).
https://doi.org/10.1057/s41599-023-01919-0

Debie, E., & Shafi, K. (2017). Implications of the curse of dimensionality for

supervised learning classifier systems: theoretical and empirical analyses.

100


https://doi.org/10.30598/barekengvol13iss3pp145-156ar884
https://doi.org/10.1016/j.ijforecast.2018.05.006
https://doi.org/10.3390/electronics11020250
https://doi.org/10.1057/s41599-023-01919-0

Pattern Analysis and Applications, 22(2), 519-536.
https://doi.org/10.1007/s10044-017-0649-0

Doma’nski, P. D., & Wieclawski, M. (2015). Memory-Based Prediction of District
Heating Temperature Using GPGPU. Progress in Automation, Robotics and
Measuring Techniques: Control and Automation. https://doi.org/10.1007/978-
3-319-15796-2

Du, X., Liu, M., & Sun, Y. (2022). Cell Recognition Using BP Neural Network Edge
Computing.  Contrast Media &  Molecular  Imaging, 2022(1).
https://doi.org/10.1155/2022/7355233

Dwiarso, U., Pujiono, & Moch Arief , S. (2017). Stock Price Prediction Using Back
Propagation Neural Network Based on Gradient Descent with Momentum and
Adaptive Learning Rate. The Journal of Internet Banking and Commerce,
22(3), 1-16.

Elhoseny, M., Metawa, N., & El-hasnony, [. M. (2022). A new metaheuristic
optimization model for financial crisis prediction: Towards sustainable
development. Sustainable Computing: Informatics and Systems, 35, 100778.
https://doi.org/10.1016/j.suscom.2022.100778

El-Melegy, M., Essai, M., & Ali, A. (2009). Robust Training of Artificial
Feedforward Neural Networks.

Farahani, M. S., & Hajiagha, S. H. R. (2021). Forecasting stock price using integrated
artificial neural network and metaheuristic algorithms compared to time series
models. Soft Computing, 25(13). https://doi.org/10.1007/s00500-021-05775-5

Foss, T., Myrtveit, 1., & Stensrud, E. (2001). A comparison of LAD and OLS

101


https://doi.org/10.1007/978-3-319-15796-2
https://doi.org/10.1007/978-3-319-15796-2
https://doi.org/10.1155/2022/7355233
https://doi.org/10.1016/j.suscom.2022.100778
https://doi.org/10.1007/s00500-021-05775-5

regression for effort prediction of software projects. In Proc. 12th European
Software Control and Metrics Conference (ESCOM 2001), 9-15.

Gamal, A. A. M., Al-Qadasi, A. A., Noor, M. A. M., Rambeli, N., & Viswanathan, K.
K. (2021). The Impact of COVID-19 on the Malaysian Stock Market:
Evidence from an Autoregressive Distributed Lag Bound Testing Approach*.
Journal of Asian Finance, Economics and Business, 8(7), 0001-0009.

Gandhmal, D. P., & Kumar, K. (2019). Systematic analysis and review of stock
market prediction techniques. Computer Science Review, 34, 100190.
https://doi.org/10.1016/j.cosrev.2019.08.001

Ghasemiyeh, R., Moghdani, R., & Sana, S. S. (2017). A Hybrid Artificial Neural
Network with Metaheuristic Algorithms for Predicting Stock Price.
Cybernetics and Systems, 48(4), 365-392.
https://doi.org/10.1080/01969722.2017.1285162

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5), 533-549.
https://doi.org/10.1016/0305-0548(86)90048-1

Gupta, N., Khosravy, M., Mahela, O. P., & Patel, N. (2020). Plant biology-inspired
genetic algorithm: superior efficiency to firefly optimizer. In Applications of
Firefly Algorithm and Its Variants, 193-219. Springer, Singapore.

Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network
models in stock market index prediction. Expert Systems with Applications,
38(8), 10389—-10397. https://doi.org/10.1016/j.eswa.2011.02.068

Hadi, N. S. (2006). Time Series Analysis for Hydrological Features: Applications of

102


https://doi.org/10.1080/01969722.2017.1285162
https://doi.org/10.1016/j.eswa.2011.02.068

Box-Jenkins Models to Euphrates River. Journal of Applied Sciences, 6(9),
1929-1934. https://doi.org/10.3923/jas.2006.1929.1934

Hafiz, N. A. M., Ishak, N., & Rasedee, A. F. N. (2019). Analysing and Forecasting
Share Price Index in Malaysia. Journal of Computational and Theoretical
Nanoscience, 16(12), 4930—4936. https://doi.org/10.1166/jctn.2019.8544

Hampel, F. (1974). The Influence Curve and Its Role in Robust Estimation The
Influence Curve and Its Role in Robust Estimation. Journal of the American
Statistical Association, 69(346), 383—-393.

Hasanat, M. W., Hoque, A., Shikha, F. A., Anwar, M., Hamid, Prof. Dr. A. B. A., &
Tat, Prof. Dr. H. H. (2020). The Impact of Coronavirus (Covid-19) on E-
Business in Malaysia. Asian Journal of Multidisciplinary Studies, 3(1).

Hassan, M., Hossain, S., & Ahmed, H. (2022). Impact of Islamic Finance on
Economic Growth. Journal of Economic Cooperation and Development,
43(2), 101-128.

Hayes, A. (2021). What Is Nonlinearity? Investopedia.
https://www.investopedia.com/terms/n/nonlinearity.asp

Hayes, A. (2022). Multicollinearity. Investopedia.
https://www.investopedia.com/terms/m/multicollinearity.asp

Ho, S. Y. (2019). The macroeconomic determinants of stock market development in
Malaysia: an empirical analysis. Global Business and Economics Review,
21(2), 174. https://doi.org/10.1504/gber.2019.10018126

Holger Kantz, & Schreiber, T. (2015). Nonlinear time series analysis. Beijing: Shi Jie
Tu Shu Chu Ban Gong Si Beijing Gong Si.

103


https://doi.org/10.3923/jas.2006.1929.1934
https://doi.org/10.1504/gber.2019.10018126

Hosseinioun, N. (2016). Forecasting Outlier Occurrence in Stock Market Time Series
Based on Wavelet Transform and Adaptive ELM Algorithm. Journal of
Mathematical Finance, 06(01), 127-133.
https://doi.org/10.4236/jmf.2016.61013

Hsieh, L.-F., Hsieh, S.-C., & Tai, P.-H. (2011). Enhanced stock price variation
prediction via DOE and BPNN-based optimization. Expert Systems with
Applications, 38(11). https://doi.org/10.1016/j.eswa.2011.04.229

Huang, G.-B., Chen, L., & Siew, C.-K. (2006). Universal Approximation using
Incremental Constructive Feedforward Networks with Random Hidden Nodes.
IEEE  Transactions  on  Neural  Networks, 17(4), 879-892.
https://doi.org/10.1109/tnn.2006.875977

Ican, O., & Celik, T. B. (2017). Stock Market Prediction Performance of Neural
Networks: A Literature Review. International Journal of Economics and
Finance, 9(11), 100. https://doi.org/10.5539/ijef.vOn11p100

Jang, H., Topal, E., & Kawamura, Y. (2015). Unplanned dilution & ore loss
prediction in longholestoping mines via multiple regression & artificial neural
network analyses. Journal of Southern African Institute of Mining Metallurgy,
115(5), 449-456.

Jin, Z., Yang, Y., & Liu, Y. (2020). Stock closing price prediction based on sentiment
analysis and LSTM.  Neural  Computing and  Applications.
https://doi.org/10.1007/s00521-019-04504-2

K. Ritwik Reddy, B. Tarun Kumar, V. Rohit Ganesh, Polisetty Swetha, & Prakash

Kumar Sarangi. (2022). Stock Market Prediction Using Recurrent Neural

104


https://doi.org/10.1016/j.eswa.2011.04.229
https://doi.org/10.1109/tnn.2006.875977
https://doi.org/10.5539/ijef.v9n11p100

Network. https://doi.org/10.1109/ccet56606.2022.10080154

Kalaiselvi, K., Velusamy, K., & Gomathi, C. (2018). Financial prediction using back
propagation neural networks with opposition based learning. Journal of
Physics: Conference Series, 1142, 012008. https://doi.org/10.1088/1742-
6596/1142/1/012008

Kamaruddin, S. A., Ghani, N. A. M., Rahim, H. A., & Musirin, 1. (2019). Killer
Whale — Backpropagation (KW-BP) Algorithm for Accuracy Improvement of
Neural Network Forecasting Models on Energy-Efficient Data. I4ES
International  Journal of  Artificial  Intelligence, 8(3), 270-270.
https://doi.org/10.11591/ijai.v8.i3.pp270-277

Kamaruddin, S., Azura, N., Ghani, M., & Ramli, N. (2016). The Improved BPNN-
NAR and BPNN-NARMA Models on Malaysian Aggregate Cost Indices with
Outlying Data. Jurnal Teknologi, 78,2180-3722.

Karim, Z. A., Yi, L. Q., Karim, B. A., & Zakaria, S. F. D. (2024). The Impact of the
COVID-19 Pandemic on the Malaysian Stock Market. Contemporary Issues
in  Finance, Investment and  Banking in  Malaysia, 65-69.
https://doi.org/10.1007/978-981-99-5447-6 5

Kenton, W. (2020). Kuala Lumpur Stock Exchange (KLS). Investopedia;
Investopedia. https://www.investopedia.com/terms/k/klse.asp

Khanthavit, A. (2021). Measuring COVID-19 Effects on World and National Stock
Market Returns*. Journal of Asian Finance, Economics and Business, 8(2),

0001-0013.

105


https://doi.org/10.1109/ccet56606.2022.10080154
https://doi.org/10.11591/ijai.v8.i3.pp270-277
https://doi.org/10.1007/978-981-99-5447-6_5

Khairudin, N., Sima, N., & Shariff, M. (2023). The Impact of COVID-19 Outbreaks
on the Volatility of the Stock Market in Malaysia. Malaysian Journal of

Computing, 8(1), 1287-1300. https://doi.org/10.24191/mjoc.v8i1.19172

Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales
forecasting. [International Journal of Forecasting, 32(3), 788-803.
https://doi.org/10.1016/j.ijforecast.2015.12.004

Kumar, G., Jain, S., & Singh, U. P. (2020). Stock Market Forecasting Using
Computational Intelligence: A Survey. Archives of Computational Methods in
Engineering, 28(3). https://doi.org/10.1007/s11831-020-09413-5

Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning
techniques and data for stock market forecasting: A literature review. Expert
Systems with Applications, 197, 116659.
https://do1.org/10.1016/j.eswa.2022.116659

Lai, M.-M., & Lau, S.-H. (2004). Herd Behavior and Market Stress: The Case of
Malaysia. Academy of Accounting and Financial Studies Journal, 8(3), 85—
102.

Lean, H. H., & Smyth, R. (2010). On the dynamics of aggregate output, electricity
consumption and exports in Malaysia: Evidence from multivariate Granger
causality tests. Applied Energy, 87(6), 1963-1971.

https://doi.org/10.1016/j.apenergy.2009.11.017

Li, G, Tan, Z., Xu, W., Xu, F., Wang, L., Chen, J., & Wu, K. (2021). A particle
swarm optimization improved BP neural network intelligent model for

106


https://doi.org/10.24191/mjoc.v8i1.19172
https://doi.org/10.1016/j.ijforecast.2015.12.004
https://doi.org/10.1016/j.eswa.2022.116659
https://doi.org/10.1016/j.apenergy.2009.11.017

electrocardiogram classification. BMC Medical Informatics and Decision

Making, 21(S2). https://doi.org/10.1186/s12911-021-01453-6

Liang, Y. (2021). Stock Market Forecasting based on Artificial Intelligence
Technology. In Electronic Theses, Projects, and Dissertations. Retrieved from
https://scholarworks.lib.csusb.edu/etd/1324

Limas, M. C., Ordieres Meré, J. B., de Pison Ascacibar, F. J. M., & Gonzalez, E. P. V.
(2004). Outlier Detection and Data Cleaning in Multivariate Non-Normal
Samples: The PAELLA Algorithm. Data Mining and Knowledge Discovery,
9(2), 171-187. https://doi.org/10.1023/b:dami.0000031630.50685.7¢c

Linden, A., & Adams, J. L. (2010). Applying a propensity score-based weighting
model to interrupted time series data: improving causal inference in
programme evaluation. Journal of Evaluation in Clinical Practice, 17(6),
1231-1238. https://doi.org/10.1111/1.1365-2753.2010.01504.x

Liu, Y., Cao, C., Huang, W., & Hao, S. (2021). A Deep Neural Network Based Model
For Stock Market Prediction. 2021 IEEE 2nd International Conference on Big
Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE).
https://doi.org/10.1109/icbaie52039.2021.9390010

Lv, J., Wang, C., Gao, W., & Zhao, Q. (2021). An Economic Forecasting Method
Based on the LightGBM-Optimized LSTM and Time-Series Model.
Computational Intelligence and  Neuroscience, 2021, 1-10.

https://doi.org/10.1155/2021/8128879

107


https://doi.org/10.1186/s12911-021-01453-6
https://scholarworks.lib.csusb.edu/etd/1324
https://doi.org/10.1023/b:dami.0000031630.50685.7c
https://doi.org/10.1109/icbaie52039.2021.9390010
https://doi.org/10.1155/2021/8128879

Ma, Y., Zhang, Z., & Thler, A. (2020). Multi-Lane Short-Term Traffic Forecasting
with Convolutional LSTM Network. IEEE Access, 8, 34629-34643.
https://doi.org/10.1109/access.2020.2974575

Ma, Z., Wu, G., Suganthan, P. N., Song, A., & Luo, Q. (2022). Performance
assessment and exhaustive listing of 500+ nature-inspired metaheuristic

algorithms. Swarm and  Evolutionary Computation, 101248.

https://doi.org/10.1016/j.swevo.2023.101248

Mahsereci, M., Balles, L., Lassner, C., & Hennig, P. (2017). Early stopping without a

validation set. arXiv preprint arXiv:1703.09580. (n.d.).

Mamoudan, M. M., Ostadi, A., Pourkhodabakhsh, N., Fathollahi-Fard, A. M., &
Soleimani, F. (2023). Hybrid neural network-based metaheuristics for
prediction of financial markets: a case study on global gold market. Journal of
Computational ~ Design and  Engineering, 10(3), 1110-1125.
https://doi.org/10.1093/jcde/qwad039

Mansor, R., Othman, M., & Kasim, M. M. (2017). Fuzzy Reasoning Based Time
Series Forecasting Using Weighted Subsethood Model. Advanced Science
Letters, 23(9), 9094-9097. https://doi.org/10.1166/as1.2017.10030

Massart, D. L., Kaufman, L., Rousseeuw, P. J., & Leroy, A. (1986). Least median of
squares: a robust method for outlier and model error detection in regression
and calibration. Analytica Chimica Acta, 187, 171-179.
https://doi.org/10.1016/s0003-2670(00)82910-4

Mehmood, F., Ahmad, S., & Whangbo, T. K. (2023). An Efficient Optimization

108


https://doi.org/10.1093/jcde/qwad039
https://doi.org/10.1016/s0003-2670(00)82910-4

Technique for Training Deep Neural Networks. Mathematics, 11(6), 1360.
https://doi.org/10.3390/math11061360

Mehrnaz Faraz, & Hamid Khaloozadeh. (2020). Multi-Step-Ahead Stock Market
Prediction Based on Least Squares Generative Adversarial Network. 2020
28th  Iranian Conference on Electrical Engineering (ICEE). IEEE.
https://doi.org/10.1109/icee50131.2020.9260858

Mishra, P., Pandey, C., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019).
Descriptive Statistics and Normality Tests for Statistical Data. Annals of
Cardiac Anaesthesia, 22(1), 67.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350423/

Mohammad Hussein Amiri, Nastaran Mehrabi Hashjin, Mohsen Montazeri, Seyedali
Mirjalili, & Nima Khodadadi. (2024). Hippopotamus optimization algorithm:
a novel nature-inspired optimization algorithm. Scientific Reports, 14(1).
https://doi.org/10.1038/541598-024-54910-3

Moraitis, N., Tsipi, L., Vouyioukas, D., Gkioni, A., & Louvros, S. (2021).
Performance evaluation of machine learning methods for path loss prediction
in rural environment at 3.7 GHz. Wireless Networks, 27(6), 4169—4188.

https://doi.org/10.1007/s11276-021-02682-3

Mutinda, J. K., & Geletu, A. (2025). Stock Market Index Prediction Using
CEEMDAN-LSTM-BPNN-Decomposition Ensemble Model. Journal of

Applied Mathematics, 2025(1). https://doi.org/10.1155/jama/770643 1

109


https://doi.org/10.3390/math11061360
https://doi.org/10.1109/icee50131.2020.9260858
https://doi.org/10.1038/s41598-024-54910-3
https://doi.org/10.1155/jama/7706431

Naidoo, V., & Du, S. (2022). A Deep Learning Method for the Detection and
Compensation of Outlier Events in Stock Data. Electronics, 11(21), 3465.

Nayak, S., Misra, B., & Behera, H. (2014). Impact of Data Normalization on Stock
Index Forecasting. International Journal of Computer Information Systems
and Industrial Management Applications, 6, 257-269.

Oh, J. (2022). Development of a stock trading system based on a neural network using
highly volatile stock price patterns. PeerJ Computer Science, 8, €915.
https://doi.org/10.7717/peerj-cs.915

Oracle. (2014). What Is Big Data? | Oracle. Oracle.com. https://www.oracle.com/big-
data/what-is-big-data/#:~:text=The%?20definition%200f%20big%20data

Pellegrino, E., Brunet, T., Pissier, C., Camilla, C., Abbou, N., Beaufils, N., ... Ouafik,
L. (2022). Deep Learning Architecture Optimization with Metaheuristic
Algorithms for Predicting BRCA1/BRCA2 Pathogenicity NGS Analysis.
BioMedInformatics, 2(2), 244-267.
https://doi.org/10.3390/biomedinformatics2020016

Pernia-Espinoza, A. V., Ordieres-Mer¢, J. B., Martinez-de-Pison, F. J., & Gonzailez-
Marcos, A. (2005). TAO-robust backpropagation learning algorithm. Neural
Networks, 18(2), 191-204. https://doi.org/10.1016/j.neunet.2004.11.007

Persio, L., & Honchar, O. (2018). Artificial Neural Networks architectures for stock
price prediction: comparisons and applications.

Pillay, B. J., & Ezugwu, A. E. (2019). Metaheuristics optimized feedforward neural

networks for efficient stock price prediction. arXiv preprint arXiv:1906.10121.

110


https://doi.org/10.7717/peerj-cs.915
https://doi.org/10.3390/biomedinformatics2020016
https://doi.org/10.1016/j.neunet.2004.11.007

Powers, J. (2022). Curse of Dimensionality. Built In. https://builtin.com/data-
science/curse-dimensionality

Priddy, K. L. (2007). Artificial Neural Networks : An Introduction. New Delhi:
Prentice-Hall India.

Primadusi, U., Cahyadi, A. 1., & Wahyunggoro, O. (2016). The comparison of RBF
NN and BPNN for SOC estimation of LiFePO4 battery. AIP Conference
Proceedings, 1755(1). https://doi.org/10.1063/1.4958528

Ren, L., Ren, P., & Glasure, Y. (2018). On the different forms of returns from moving
average buy-sell trading rule in the stock market. Benchmarking: An
International Journal, 25(1), 253-258. https://doi.org/10.1108/bij-06-2016-
0099

Rizvi, D. R., & Khalid, M. (2024). Performance Analysis of Stocks using Deep
Learning Models.  Procedia  Computer  Science, 233, 753-762.
https://doi.org/10.1016/j.procs.2024.03.264

Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of the
American Statistical Association, 79(388), 871-880.
https://doi.org/10.1080/01621459.1984.10477105

Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier detection.
Hoboken, New York: Wiley-Interscience.

Rusiecki, A. (2012). Robust Learning Algorithm Based on Iterative Least Median of
Squares. Neural Processing Letters, 36(2), 145-160.

https://doi.org/10.1007/s11063-012-9227-z

111


https://doi.org/10.1063/1.4958528
https://doi.org/10.1108/bij-06-2016-0099
https://doi.org/10.1108/bij-06-2016-0099
https://doi.org/10.1016/j.procs.2024.03.264
https://doi.org/10.1080/01621459.1984.10477105

Rusiecki, A. (2013). Robust learning algorithm based on LTA estimator.
Neurocomputing, 120, 624—632. https://doi.org/10.1016/j.neucom.2013.04.008

Rusiecki, A., Kordos, M., Kami nskikami'nski, T., & Gre'n, K. G. (n.d.). Training
Neural Networks on Noisy Data. www.springerlink.com

Rusiecki, A., Kordos, M., Kaminski, T., & Gren, K. (2014). Training neural networks
on noisy data. In International Conference on Artificial Intelligence and Soft
Computing, 131-142. Springer, Cham.

Samantaray, S., & Sahoo, A. (2020). Prediction of runoff using BPNN, FFBPNN,
CFBPNN algorithm in arid watershed: A case study. International Journal of
Knowledge-Based and Intelligent Engineering Systems, 24(3), 243-251.

Selvamuthu, D., Kumar, V., & Mishra, A. (2019). Indian stock market prediction
using artificial neural networks on tick data. Financial Innovation, 5(1).
https://doi.org/10.1186/s40854-019-0131-7

Seong, L. K., & Salleh, R. M. (2022). A Comparative Study on Criminal Cases
through Economic Indicators in Malaysia using Regression Modelling.
Enhanced Knowledge in Sciences and Technology, 2(1), 132—142.

Sharma, A. K., Kiran, M., Pauline Sherly Jeba, P., Maheshwari, P., & Divakar, V.
(2021). Demand Forecasting Using Coupling Of Machine Learning And Time
Series Models For The Automotive After Market Sector. 2021 5th
International Conference on Electrical, Electronics, Communication,
Computer Technologies and Optimization Techniques (ICEECCOT).
https://doi.org/10.1109/iceeccot52851.2021.9708010

Shehadeh, A. A., Alwadi, S. M., & Almaharmeh, M. I. (2022). Detecting and

112


https://doi.org/10.1109/iceeccot52851.2021.9708010

Analysing Possible Outliers in Global Stock Market Returns. Cogent
Economics & Finance, 10(1). https://doi.org/10.1080/23322039.2022.2066762
Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using
a comprehensive deep learning system. Journal of Big Data, 7(1).

https://doi.org/10.1186/540537-020-00333-6

Simmons, J. (Ed.). (2018). Are Golden and Death Crosses a Good Bet? Factset.com.

https://insight.factset.com/are-golden-and-death-crosses-a-good-bet

Snigdha, A. (2021, June 12). Guide to Prevent Overfitting in Neural Networks.
Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/06/complete-
guide-to-prevent-overfitting-in-neural-networks-part-1/

Sonkavde, G., Dharrao, D. S., Bongale, A. M., Deokate, S. T., Doreswamy, D., &
Bhat, S. K. (2023). Forecasting Stock Market Prices Using Machine Learning
and Deep Learning Models: A Systematic Review, Performance Analysis and
Discussion of Implications. International Journal of Financial Studies, 11(3),
94. https://doi.org/10.3390/1jfs11030094

Surakhi, O., Zaidan, M. A., Fung, P. L., Hossein Motlagh, N., Serhan, S.,
AlKhanafseh, M., ... Hussein, T. (2021). Time-Lag Selection for Time-Series
Forecasting Using Neural Network and Heuristic Algorithm. Electronics,
10(20), 2518. https://doi.org/10.3390/electronics10202518

Taharem, A., & Fitriyah, L. (2023). Bursa Malaysia Reports RM252.4 Million Profit
After Tax, Zakat And Minority Interest For Financial Year Ended 31
December 2023.

113


https://doi.org/10.1080/23322039.2022.2066762
https://doi.org/10.1186/s40537-020-00333-6
https://insight.factset.com/are-golden-and-death-crosses-a-good-bet
https://doi.org/10.3390/ijfs11030094
https://doi.org/10.3390/electronics10202518

Tan, A., Yiing, S., & Thim, C. K. (n.d.). Prediction of Bursa Malaysia Stock Index
using Autoregressive Integrated Moving Average and Artificial Neural

Network.

Torres, J. A. O., Santiago, A. M., Izaguirre, J. M. V., Garcia, M. A., & Hernandez, A.
D. (2022). Hypertension Diagnosis with Backpropagation Neural Networks
for Sustainability in Public Health. Public Health. Sensors, 22, 5272.

https://doi.org/10.3390/522145272

Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal
of Forecasting, 7(1), 1-20. https://doi.org/10.1002/for.3980070102

Utomo, D., Pujiono, & Soeleman, M. A. (2017). Stock Price Prediction Using Back
Propagation Neural Network Based on Gradient Descent with Momentum and
Adaptive Learning Rate. Journal of Internet Banking and Commerce, 22(3),
1-16.

Uzair, M., & Jamil, N. (2020). Effects of Hidden Layers on the Efficiency of Neural
networks. 2020 IEEE 23rd International Multitopic Conference (INMIC), 1-6.
IEEE. https://doi.org/10.1109/inmic50486.2020.9318195

Vargas, V. W. de, Aranda, J. A. S., Costa, R. dos S., Pereira, P. R. da S., & Barbosa,
J. L. V. (2022). Imbalanced data preprocessing techniques for machine
learning: a systematic mapping study. Knowledge and Information Systems,
65(1), 31-57. https://doi.org/10.1007/s10115-022-01772-8

Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020). Stock Closing Price
Prediction using Machine Learning Techniques. Procedia Computer Science,

114


https://doi.org/10.3390/s22145272
https://doi.org/10.1109/inmic50486.2020.9318195
https://doi.org/10.1007/s10115-022-01772-8

167, 599-606. https://doi.org/10.1016/j.procs.2020.03.326

Vishwakarma, G. K., Paul, C., & Elsawah, A. M. (2020). An algorithm for outlier
detection in a time series model using backpropagation neural network.
Journal of King Saud University-Science, 32(8), 3328-3336.

Vishwakarma, G. K., Paul, C., & Elsawah, A. M. (2020). An algorithm for outlier
detection in a time series model using backpropagation neural network.
Journal of King Saud University - Science, 32(8), 3328-3336.
https://doi.org/10.1016/].jksus.2020.09.018

Wang, G.-G.,, & Tan, Y. (2017). Improving Metaheuristic Algorithms With
Information Feedback Models. [EEE Transactions on Cybernetics, 49(2),
542-555. https://doi.org/10.1109/tcyb.2017.2780274

Wang, H., & Suter, D. (2003). Using symmetry in robust model fitting. Pattern
Recognition Letters, 24(16), 2953-2966. https://doi.org/10.1016/s0167-
8655(03)00156-9

Wang, X., Kang, Y., Hyndman, R. J., & Li, F. (2023). Distributed ARIMA models for
ultra-long time series. International Journal of Forecasting, 39(3), 1163—
1184. https://doi.org/10.1016/].ijforecast.2022.05.001

Wei, H.-L., Balikhin, M. A., & Walker, S. N. (2015). A new ridge basis function
neural network for data-driven modeling and prediction. In 2015 10th
International Conference on Computer Science & Education (ICCSE), 125—
130. IEEE. https://doi.org/10.1109/iccse.2015.7250229

Yang, S., Hu, X., & Wang, Y. D. (2022). An Efficient and Explainable Ensemble
Learning Model for Asphalt Pavement Condition Prediction Based on LTPP

115


https://doi.org/10.1016/j.procs.2020.03.326
https://doi.org/10.1016/j.jksus.2020.09.018
https://doi.org/10.1016/s0167-8655(03)00156-9
https://doi.org/10.1016/s0167-8655(03)00156-9
https://doi.org/10.1016/j.ijforecast.2022.05.001
https://doi.org/10.1109/iccse.2015.7250229

Dataset. /EEE Transactions on Intelligent Transportation Systems, 23(11),
22084-22093. https://doi.org/10.1109/TITS.2022.3164596

Yetis, Y., Kaplan, H., & Jamshidi, M. (2014). Stock Market Prediction by Using
Artificial Neural Network. Waikoloa, HI, USA: IEEE Xplore 2014 World
Automation Congress (WAC).

Yiing, A. T. S., & Thim, C. K. (2015). Prediction of Bursa Malaysia Stock Index
using Autoregressive Integrated Moving Average and Artificial Neural
Network. In Malaysia Statistics Conference (MyStats 2015), 95.

Zhang, J., & Qu, S. (2021). Optimization of Backpropagation Neural Network under
the  Adaptive  Genetic  Algorithm. Complexity, 2021, 1-9.
https://doi.org/10.1155/2021/1718234

Zhang, T., Wei, D., Liu, Z., & Wu, X. (2021). Lottery preference and stock market
participation: evidence from China. China Finance Review International.
https://doi.org/10.1108/cfri-01-2021-0008

Zhang, Z., Ahmed, K. A., Hasan, M. R., Gedeon, T., & Hossain, M. Z. (2024). A
Deep Learning Approach to Diabetes Diagnosis. ArXiv Preprint
ArXiv:2403.07483.

Zhao, F., Gao, Y., Li, X,, An, Z., Ge, S., & Zhang, C. (2021). A similarity
measurement for time series and its application to the stock market. Expert
Systems with Applications, 182, 115217.
https://doi.org/10.1016/j.eswa.2021.115217

Zhao, J., Nguyen, H., Nguyen-Thoi, T., Asteris, P. G., & Zhou, J. (2021). Improved
Levenberg—Marquardt backpropagation neural network by particle swarm and

116


https://doi.org/10.1109/TITS.2022.3164596
https://doi.org/10.1155/2021/1718234
https://doi.org/10.1108/cfri-01-2021-0008
https://doi.org/10.1016/j.eswa.2021.115217

whale optimization algorithms to predict the deflection of RC beams.

Engineering with Computers. https://doi.org/10.1007/s00366-020-01267-6

Zhao, X., Liu, Y., & Zhao, Q. (2024). Generalized Loss-Based CNN-BiLSTM for
Stock Market Prediction. International Journal of Financial Studies, 12(3), 61.

https://doi.org/10.3390/ijfs12030061

Zulkifli, K., Safian, S. S., Radzil, R. H. M., & Shaharuddin, N. (2024). The Impact of
Stock Market Development on Economic Growth a Case of Malaysia.

Information Management and Business Review, 16(1), 86—104.

117


https://doi.org/10.3390/ijfs12030061

Appendix A
Python Code for Enhanced Backpropagation Neural Network (BPNN)
Model

import scipy.io as sio

import numpy as np

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential

from keras.layers.core import Dense

import keras

import tensorflow as tf

from matplotlib import pyplot as plt

import pandas as pd

# parameters
tf.compat.vl.disable eager execution()
useScaling = 1
useNormalization = 1
learningRate = 1e-3
weightDecay = 1e-3 / 200
maxEpochs = 1000;
miniBatchSize = 2048
lag=15

# hidden layer sizes

hl1 =10

h2 =10

h3=1

data= pd.read csv("C:\\Users\\HP\\Downloads\\Analysis using Python\\Coding\\Used
data\\Simulated1.csv")
118



uall=np.float32(data.to_numpy())

p.q = uall.shape

uall = np.float32(uall)

# normalize so that average mean and zero-variance
if useNormalization:

normalizer = StandardScaler()

uall_normParam = normalizer.fit(uall)

uall norm = uall normParam.transform(uall)

# scale the data so that it becomes between 0 and 1
if useScaling:
mm_scaler = MinMaxScaler(feature range=(0, 1), copy=True)

uall_scaled = mm_scaler.fit transform(uall norm)

trnsize = round(p/2);
tstsize = round(p/2);
lagx =0

# psi_trn
psi_trn = uall scaled[lag:trnsize-1]
lag2 = lag-1
for it in range(lag2):
takenlagstart = lag2-it
takenlagend = trnsize-(it+2)
ut trn = uall scaled[takenlagstart:takenlagend]

psi_trn = np.concatenate((ut_trn, psi_trn), 1)
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# psi_tst
psi_tst =uall scaled[(tstsize+lag-1):(p-1)]

lag2 =lag-1
for it in range(lag2):
takenlagstart = tstsize+lag2-it-1
takenlagend = p-it-2
ut_tst =uall scaled[takenlagstart:takenlagend]
psi_tst = np.concatenate((ut_tst, psi_tst), 1)

yt_trn =uall scaled[(lag+1):round(p/2)]
yt_tst=uall scaled[(round(p/2)+lag):p]

L S L I G G L R
#Hit

# define and create the MLP network

model = Sequential()

model.add(Dense(h1, input_dim=len(psi_trn[0]), activation="relu"))

model.add(Dense(h2, activation="relu"))

model.add(Dense(h3, activation="linear"))

defmy loss fn(y true, y pred):

squared_difference = tf.square(y_true - y_pred)*x (1-exp((0.35*1og(10)(-

3.3)(0.06))+(0.93*1.2)+1.26)/(4000+(2.23%(-3.3))))

return tf.reduce mean(squared difference, axis=-1) # Note the ‘axis=-1"
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#Enhanced = EIMed x (1-exp((0.35*1og(10)(-3.3)(0.06))+(0.93*1.2)+1.26)/(4000-+(2.23*(-
3.3))

#RMSE
defmy loss fn2(y_true,y pred):
squared_difference = tf.square((((y_pred - y_true) ** 2)))

return tf.reduce mean(squared_difference, axis=-1) # Note the “axis=-1"

#MSPE
#def my loss fn3(y true,y pred):
# squared difference = mean_squared error(y_true['actual'], predictions)

# return tf.reduce_mean(squared difference, axis=-1) # Note the "axis=-1"

#GRMSE
defmy loss fnd(y true,y pred):
squared_difference = tf.square(np.prod((y true/y pred)) - 1)

return tf.reduce mean(squared difference, axis=-1) # Note the ‘axis=-1"

# train the model
opt = tf.keras.optimizers.legacy. Adam(Ir = learningRate, decay = weightDecay)

model.compile(loss=my loss fn2, optimizer=opt)

# train the model
print("[INFO] training model...")
ccc=model.fit(psi_trn, yt trn, validation data=(psi_tst, yt_tst), epochs=maxEpochs,

batch size=miniBatchSize)

# make predictions on the training data
print("Predicting Training Set...")
preds_trn = model.predict(psi_trn)

yhat trn = preds_trn.flatten()

resid_trn =yt _trn.flatten() - yhat trn
percentDiff trn = (resid trn/ yt _trn) * 100
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absPercentDiff trn = np.abs(percentDiff trn)
mean_trn = np.mean(absPercentDiff trn)
std_trn = np.std(absPercentDiff trn)
plt.figure()

Jj-kk =yt _trn.shape
plt.plot(np.arange(1,jj+1), yt_trn)

plt.plot (np.arange(1,jj+1), yhat _trn, ":'")
plt.xlabel("Cases (dimensionless)")
plt.ylabel("Angular Velocity (w)")
plt.title("One Step Ahead Prediction (Training Set)")
plt.show()

# make predictions on the testing data
print("Predicting Testing Set...")

preds_tst = model.predict(psi_tst)

yhat_tst = preds_tst.flatten()

resid_tst =yt tst.flatten() - yhat tst
percentDiff tst = (resid tst/ yt tst) * 100
absPercentDiff tst = np.abs(percentDiff tst)
mean_tst = np.mean(absPercentDiff tst)
std_tst = np.std(absPercentDiff tst)
plt.figure()

jj-kk =yt tst.shape
plt.plot(np.arange(1,jj+1), yt_tst)

plt.plot (np.arange(1,jj+1), yhat tst, ")
plt.xlabel("Cases (dimensionless)")
plt.ylabel("Angular Velocity (w)")
plt.title("One Step Ahead Prediction (Testing Set)")
plt.legend(['Actual’, 'Forecasted']);
plt.show()

# plot the residuals
plt.figure()
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plt.subplot(211)

Jj-kk = psi_trn.shape
plt.plot(np.arange(1,jj+1), resid_trn)
plt.xlabel("Cases (dimensionless)")
plt.ylabel(" Angular Velocity Difference (w)")
plt.title("Residuals Plot (Training & Testing Set)")
plt.subplot(212)

jj-kk = psi_tst.shape
plt.plot(np.arange(1,jj+1), resid_tst)
plt.xlabel("Cases (dimensionless)")
plt.ylabel("Angular Velocity Difference (w)")
# plt.title("Residuals Plot (Testing Set)")
plt.show()

# histogram

plt.figure()

num_bins = 15

plt.subplot(211)

n, bins, patches = plt.hist(resid trn, num_bins, facecolor='blue', alpha=0.5)
plt.title("Residuals Histogram (Training & Testing Set)")
plt.xlabel("Bins")

plt.ylabel("Frequency")

plt.subplot(212)

n, bins, patches = plt.hist(resid_tst, num_bins, facecolor='blue', alpha=0.5)
plt.xlabel("Bins")

plt.ylabel("Frequency")

plt.show()

# autocorrelation

plt.figure()
plt.subplot(211)

plt.acorr(resid_trn)

plt.title(" Autocorrelation (Training & Testing Set)")

123



plt.xlabel("Lags")
plt.ylabel("ACF")
plt.subplot(212)
plt.acorr(resid_tst)
plt.xlabel("Lags")
plt.ylabel("ACF")
plt.show()

# crosscorrelation

plt.figure()

plt.subplot(211)
plt.xcorr(resid_trn, ut_trn.flatten())
plt.title("Crosscorrelation between Input 1 & Residuals (Training & Testing Set)")
plt.xlabel("Lags")
plt.ylabel("CCF")

plt.subplot(212)

plt.xcorr(resid_tst, ut_tst.flatten())
plt.xlabel("Lags")
plt.ylabel("CCF")

plt.show()

plt.figure()
plt.subplot(211)

plt.xcorr(resid_trn, yt trn.flatten())

plt.title("Crosscorrelation between Input 2 & Residuals (Training & Testing Set)")
plt.xlabel("Lags")

plt.ylabel("CCF")

plt.subplot(212)

plt.xcorr(resid_tst, yt tst.flatten())

plt.xlabel("Lags")

plt.ylabel("CCF")

plt.show()
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def rmse(predictions, targets):
nmn

"""Calculate root mean squared error between two time series

return np.sqrt(((predictions - targets) ** 2).mean())

rmse_train = rmse(resid_trn, yt trn)

rmse_test = rmse(resid_tst, yt_tst)

print(rmse_train)

print(rmse_test)
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Appendix B

Performance of the BPNN, BPNN with LMedS and Enhanced BPNN Model on Real Data, FBM KLCI stock market

RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
5 0.662752  0.472155 | 0.664186 | 0.482093 | 0.662216 0.477726 | 1.640006  1.464304 | 1.638502 1.480626 | 1.638965  1.472271
10 0.670994  0.480233 | 0.663848 | 0.475844 | 0.658419 0.479372 | 1.653010 1.476008 | 1.648521 1.472004 | 1.632699  1.474569
15 0.671108  0.473039 | 0.663664 | 0.475984 | 0.677336 0.517913 | 1.652941  1.465299 | 1.640292 1.468027 | 1.665490  1.534244
20 0.667396  0.476932 | 0.661143 | 0.475123 | 0.671097 0.475716 | 1.646816  1.470987 | 1.646790  1.469485 | 1.652891 1.469242
5 25 0.670143  0.475070 | 0.667345 | 0.475632 | 0.670035 0.472453 | 1.651446  1.468344 | 1.645492 1.481313 | 1.651192  1.464443
30 0.671609  0.474691 | 0.665342 | 0.476669 | 0.671516 0.475034 | 1.653796  1.467775 | 1.641000 1.462110 | 1.653601 1.468250
35 0.671009  0.475874 | 0.665536 | 0.475745 | 0.670497 0.473805 | 1.652778 1.469506 | 1.641873  1.468805 | 1.651944  1.466456
40 0.671348  0.475223 | 0.661543 | 0.471637 | 0.670574 0.476960 | 1.653305 1.468519 | 1.637351 1.468600 | 1.652046  1.471077
45 0.670889  0.474097 | 0.663345 | 0.471425 | 0.671349 0.474642 | 1.652560 1.466871 1.651169  1.491456 | 1.653328  1.467687
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RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
5 0.667005  0.478524 | 0.662335 | 0.468906 | 0.668429 0.476610 | 1.647811 1.473773 | 1.652466 1.479260 | 1.650097  1.470866
10 0.667969  0.477312 | 0.663426 | 0.475823 | 0.666570 0.509837 | 1.649610 1.472149 | 1.648699 1.468774 | 1.652978  1.523672
15 0.669401  0.478072 | 0.661645 | 0.481579 | 0.673265 0.481458 | 1.651682  1.473061 1.648665  1.480045 | 1.658330  1.478336
20 0.666761  0.477817 | 0.667432 | 0.473670 | 0.669612 0.477257 | 1.647317  1.472630 | 1.647983  1.470782 | 1.652175  1.471836
10 25 0.669853  0.476157 | 0.668444 | 0.482093 | 0.668177 0.471677 | 1.652391  1.470230 | 1.647791 1.470985 | 1.649575  1.463619
30 0.669882  0.476003 | 0.663848 | 0.475844 | 0.669156 0.473831 | 1.652463 1.469996 | 1.645210 1.464032 | 1.651238  1.466862
35 0.666471  0.468706 | 0.663664 | 0.475984 | 0.669845 0.477883 | 1.646972  1.459436 | 1.642849 1.475643 | 1.652331 1.472687
40 0.671332  0.482237 | 0.667540 | 0.472878 | 0.668127 0.476790 | 1.654955  1.479337 | 1.645433  1.475424 | 1.649517 1.471111
45 0.668847  0.473988 | 0.662601 | 0.473504 | 0.669553 0.476530 | 1.650723  1.467015 | 1.643901  1.478859 | 1.651922  1.470739
5 0.641549  0.499504 | 0.662752 | 0.472155 | 0.669429 0.478683 | 1.614443  1.507490 | 1.650097 1.470866 | 1.653816  1.474679
10 0.662468  0.472787 | 0.670994 | 0.480233 | 0.671096 0.484405 | 1.643086  1.466390 | 1.649447 1.473357 | 1.656197  1.482945
N 15 0.664454  0.471668 | 0.671108 | 0.473039 | 0.665530 0.471523 | 1.645210 1.464032 | 1.650217 1.474492 | 1.646923  1.463798
20 0.668260  0.476251 | 0.668177 | 0.461132 | 0.669279 0.483240 | 1.651770  1.470983 | 1.644627 1.469324 | 1.653150  1.481093
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RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
25 0.666444  0.473154 | 0.657189 | 0.469727 | 0.666460 0.473227 | 1.648477 1.466170 | 1.649850 1.476133 | 1.648367  1.466219
30 0.665955  0.472750 | 0.656631 | 0.474076 | 0.667499 0.476321 | 1.647626  1.465644 | 1.638502 1.480626 | 1.650193  1.470810
35 0.666943  0.474061 | 0.658087 | 0.478769 | 0.668320 0.479107 | 1.649110  1.467404 | 1.648521 1.472004 | 1.651620  1.474940
40 0.667285  0.477046 | 0.659985 | 0.478587 | 0.667430 0.473313 | 1.649607 1.471770 | 1.640292 1.468027 | 1.650009  1.466398
45 0.666583  0.473032 | 0.659113 | 0.481130 | 0.666095 0.471860 | 1.648515  1.465944 | 1.647819 1.476954 | 1.647661 1.464145
5 0.656130  0.492681 | 0.631344 | 0.467543 | 0.615003 0.522368 | 1.636986  1.496921 1.651770  1.470983 | 1.589611 1.546720
10 0.668899  0.505632 | 0.653957 | 0.478879 | 0.581536 0.454544 | 1.656997 1.516662 | 1.648477 1.466170 | 1.528544  1.441731
15 0.666864  0.477336 | 0.656075 | 0.479705 | 0.665311 0.473031 | 1.651281  1.472824 | 1.647626 1.465644 | 1.648632  1.466451
20 0.665885  0.477754 | 0.654884 | 0.477493 | 0.666042 0.483818 | 1.649447  1.473357 | 1.652941 1.465299 | 1.651095  1.483060
0 25 0.666289  0.478569 | 0.651134 | 0.485324 | 0.663865 0.472938 | 1.650217 1.474492 | 1.646816 1.470987 | 1.646020  1.466116
30 0.662975  0.475147 | 0.654302 | 0.463543 | 0.665854 0.477046 | 1.644627 1.469324 | 1.651446 1.468344 | 1.649316  1.472276
35 0.666056  0.479600 | 0.653422 | 0.475553 | 0.666730 0.480681 | 1.649850 1.476133 | 1.653796 1.467775 | 1.650935  1.477750
40 0.665715  0.475846 | 0.655523 | 0.479434 | 0.663723 0.472320 | 1.649199 1.470487 | 1.652778 1.469506 | 1.646575  1.465981
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RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
45 0.666548  0.477486 | 0.650494 | 0.483523 | 0.663953 0.475855 | 1.650505  1.472822 | 1.647791 1.470985 | 1.646110  1.470419
5 0.662465  0.468906 | 0.650469 | 0.499259 | 0.651612 0.490523 | 1.646907 1.461340 | 1.653010 1.476008 | 1.634116  1.494808
10 0.664108  0.475823 | 0.659942 | 0.483758 | 0.663974 0.481865 | 1.648510  1.470854 | 1.652941  1.465299 | 1.648416  1.479606
15 0.666430  0.481579 | 0.661071 | 0.472794 | 0.652654 0.474448 | 1.652466  1.479260 | 1.646816  1.470987 | 1.630082  1.468815
20 0.663453  0.473670 | 0.656280 | 0.473552 | 0.657162 0.494181 | 1.648699  1.468774 | 1.664343 1.447603 | 1.639657  1.499030
25 25 0.664186  0.482093 | 0.660999 | 0.478252 | 0.664310 0.477196 | 1.648665 1.480045 | 1.632699  1.474569 | 1.648772  1.473142
30 0.663848  0.475844 | 0.660410 | 0.473684 | 0.662804 0.475522 | 1.647983 1.470782 | 1.665490 1.534244 | 1.646113  1.470209
35 0.663664  0.475984 | 0.661486 | 0.476440 | 0.660980 0.474636 | 1.647791  1.470985 | 1.652891 1.469242 | 1.643324  1.468975
40 0.662140  0.472878 | 0.663302 | 0.476905 | 0.661894 0.473282 | 1.645226  1.466477 | 1.651192 1.464443 | 1.644701 1.466898
45 0.662623  0.473504 | 0.662916 | 0.475594 | 0.663262 0.475767 | 1.645924  1.467272 | 1.651281 1.472824 | 1.646795  1.470468
5 0.656277  0.482098 | 0.664200 | 0.490480 | 0.663412 0.474134 | 1.638502  1.480626 | 1.637351 1.468600 | 1.649965  1.468718
¥ 10 0.662581  0.476177 | 0.657948 | 0.476737 | 0.650469 0.499259 | 1.648521  1.472004 | 1.651169 1.491456 | 1.634567  1.508933
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RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
15 0.656869  0.473406 | 0.651050 | 0.478823 | 0.659942 0.483758 | 1.640292  1.468027 | 1.652466 1.479260 | 1.643886  1.483220
20 0.662589  0.479835 | 0.659267 | 0.482879 | 0.661071 0.472794 | 1.647819  1.476954 | 1.648699 1.468774 | 1.645170  1.466366
25 0.659706  0.464590 | 0.659794 | 0.477955 | 0.656280 0.473552 | 1.643938  1.455309 | 1.646907 1.461340 | 1.638110  1.468092
30 0.661555  0.478927 | 0.651830 | 0.478924 | 0.660999 0.478252 | 1.646475 1.475839 | 1.648510 1.470854 | 1.644894  1.474373
35 0.661486  0.476440 | 0.670497 | 0.473805 | 0.660410 0.473684 | 1.645806 1.471706 | 1.652466 1.479260 | 1.644289  1.468009
40 0.661402  0.476905 | 0.670574 | 0.476960 | 0.659660 0.473114 | 1.645521 1.472729 | 1.645492 1.481313 | 1.642961 1.466941
45 0.662916  0.479935 | 0.671349 | 0.474642 | 0.660335 0.474424 | 1.648247 1.477024 | 1.641000 1.462110 | 1.643844  1.468910
5 0.663420  0.538865 | 0.666864 | 0.477336 | 0.521857 0.461651 | 1.656305 1.571833 | 1.516604 1.453920 | 1.477958  1.458276
10 0.658923  0.502608 | 0.665885 | 0.477754 | 0.657306 0.462124 | 1.647216  1.513751 1.637351  1.468600 | 1.643419  1.453981
15 0.660260  0.473839 | 0.666289 | 0.478569 | 0.660452 0.482218 | 1.646790 1.469485 | 1.651169 1.491456 | 1.646278  1.480476
» 20 0.659249  0.482256 | 0.668260 | 0.476251 | 0.664200 0.490480 | 1.645492  1.481313 | 1.633582  1.457752 | 1.653681 1.494168
25 0.657189  0.469727 | 0.666444 | 0.473154 | 0.657948 0.476737 | 1.641000 1.462110 | 1.646475 1.475839 | 1.642174  1.472389
30 0.656631  0.474076 | 0.665955 | 0.472750 | 0.651050 0.478823 | 1.640256 1.468714 | 1.645806 1.471706 | 1.632056  1.475913
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RMSE GRMSE

Input  Hidden BPNN BPNN with LMedS Enhanced Ordinary BPNN with LMedS Enhanced
Lags  Nodes Training Testing | Training | Testing | Training Testing | Training  Testing Training  Testing | Training Testing
35 0.658087 0.478769 | 0.666943 | 0.474061 | 0.659267 0.482879 | 1.642849  1.475643 | 1.645521 1.472729 | 1.644571 1.482091
40 0.659985  0.478587 | 0.667285 | 0.477046 | 0.659794 0.477955 | 1.645433  1.475424 | 1.648247 1.477024 | 1.645094  1.474496
45 0.659113  0.481130 | 0.666583 | 0.473032 | 0.651830 0.478924 | 1.643901  1.478859 | 1.642773  1.476733 | 1.632910  1.475826
5 0.633592  0.467005 | 0.553211 | 0.476555 | 0.641201 0.482612 | 1.606661  1.458996 | 1.640957 1.482443 | 1.621567  1.482817
10 0.653957  0.476273 | 0.663848 | 0.475844 | 0.650680 0.473403 | 1.638946  1.472758 | 1.647983 1.470782 | 1.632850  1.467694
15 0.656075  0.473874 | 0.663664 | 0.475984 | 0.653707 0.470076 | 1.641873  1.468805 | 1.647791  1.470985 | 1.637999  1.463066
20 0.653042  0.473614 | 0.660999 | 0.478252 | 0.650928 0.478455 | 1.637351  1.468600 | 1.645226 1.466477 | 1.633397  1.475163
40 25 0.659482  0.487875 | 0.660410 | 0.473684 | 0.657254 0.477244 | 1.651169 1.491456 | 1.651682  1.473061 | 1.644063  1.473698
30 0.651335  0.466622 | 0.661486 | 0.476440 | 0.655640 0.478212 | 1.633582  1.457752 | 1.647317 1.472630 | 1.640863  1.474613
35 0.654431  0.478879 | 0.661071 | 0.472794 | 0.656682 0.480110 | 1.638640 1.475596 | 1.652391 1.470230 | 1.642505  1.477503
40 0.657019  0.479705 | 0.656280 | 0.473552 | 0.655410 0.478927 | 1.642773  1.476733 | 1.652463 1.469996 | 1.640648  1.476203
45 0.655891  0.483571 | 0.660999 | 0.478252 | 0.653737 0.472000 | 1.640957  1.482443 | 1.653590 1.476544 | 1.637444  1.465467
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Appendix C
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - RMSE

Training value

Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 0.450142 0.373162 0.471096 0.485872 0.488382 0.447253 0.449358 0.487633 0.494545 0.453472 0.441219 0.386238 0.445801 0.453472
10 0.450623 0.444911 0.487959 0.449691 0.451217 0.442434 0.445155 0.445737 0.454576 0.453490 0.453082 0.446593 0.438536 0.453490
15 0.453731 0.432660 0.451266 0.450655 0.455530 0.451514 0.440373 0.463326 0.458522 0.452468 0.449815 0.457113 0.454685 0.452468
20 0.452363 0.450822 0.453750 0.450142 0.448983 0.447833 0.451955 0.455046 0.463326 0.434473 0.452156 0.455053 0.454198 0.444159
5 25 0.392210 0.453416 0.449915 0.450623 0.453772 0.452066 0.451982 0.454736 0.454547 0.453705 0.450084 0.457007 0.451367 0.434433
30 0.455439 0.450508 0.449541 0.453731 0.449418 0.450570 0.447525 0.453733 0.453965 0.451593 0.452243 0.457787 0.453965 0.450508
35 0.454253  0.453060 0.451264 0.452363 0.453077 0.452140 0.454863 0.456911 0.454878 0.452065 0.449983 0.457921 0.454878 0.453060
40 0.456384 0.451690 0.449928 0.453241 0.454514 0.451744 0.454266 0.456083 0.457863 0.453592 0.451356 0.455897 0.457863 0.451690
45 0.449853 0.450673 0.452163 0.449154 0.452084 0.452105 0.451110 0.453655 0.455484 0.455630 0.452969 0.453335 0.455484 0.450673
5 0.450084 0.473454 0.487633 0.453705 0.423050 0.449796 0.475820 0.447112 0.441219 0.375665 0.450759 0.458512 0.365543 0.471096
10 10 0.452243 0.450985 0.445737 0.449075 0.455439 0.447139 0.449711 0.458512 0.453082 0.454122 0.454694 0.461534 0.444911 0.487959
15 0.449983 0.455046 0.463326 0.448304 0.454253 0.447768 0.445921 0.461534 0.449815 0.454865 0.455046 0.463326 0.432660 0.451266
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
20 0.454685 0.453710 0.451211 0.449973 0.456384 0.450707 0.450359 0.453664 0.450759 0.438536 0.453710 0.451211 0.450822 0.453750
25 0.451394 0.453705 0.450084 0.448466 0.449853 0.450067 0.451414 0.453429 0.454694 0.454685 0.453705 0.450084 0.434433 0.454865
30 0.454839 0.451593 0.452243 0.452081 0.451375 0.453813 0.453730 0.452010 0.454371 0.451394 0.451593 0.452243 (.446593 0.438536
35 0.451211 0.452065 0.449983 0.452543 0.450487 0.455934 0.452308 0.453060 0.451264 0.454839 0.452065 0.449983 0.457113 0.454685
40 0.450084 0.453592 0.451356  0.451036 0.454158 0.454696 0.453160 0.451690 0.449928 0.456928 0.449541 0.453731 0.454995 0.454329
45 0.452243  0.455630 0.452969 0.451470 0.453508 0.453193 0.453189 0.450673 0.452163 0.451538 0.451264 0.452363 0.452065 0.449983
5 0.450067 0.450239 0.436904 0.447349 0.441561 0.437947 0.436275 0.446593 0.438536 0.454122 0.454379 0.487633 0.379449 0.464192
10 0.453813 0.451889 0.457784 0.448172 0.449761 0.444678 0.456957 0.457113 0.454685 0.454865 0.448814 0.445737 0.454122 0.454379
15 0.455934 0.454198 0.444159 0.450985 0.445632 0.444672 0.458250 0.454122 0.458512 0.453082 0.447277 0.455134 0.454865 0.448814
20 0.454696 0.451367 0.434433 0.450842 0.441050 0.453531 0.455401 0.454865 0.461534 0.449815 0.446213 0.453658 0.452065 0.454576
15 25 0.453193 0.447277 0.455134 0.454151 0.449290 0.451888 0.451551 0.452156 0.453664 0.450759 0.447277 0.446593 0.438536 0.458522
30 0.458664 0.446213 0.453658 0.454723 0.454012 0.454787 0.454796 0.452889 0.453429 0.454694 0.446213 0.457113 0.454685 0.459704
35 0.450439 0.453730 0.450771 0.452362 0.452710 0.454585 0.452638 0.452491 0.452010 0.454371 0.453730 0.454995 0.454329 0.451337
40 0.454659 0.452844 0.454832 (0.455887 0.453610 0.452483 0.455879 0.454685 0.456247 0.456556 (0.452844 0.455897 0.452349 0.455897
45 0.454448 0.452793 0.453474 0.455631 0.447277 0.447041 0.454220 0.454329 0.452793 0.453474 (0.452793 0.453335 0.456286 0.453335
5 0.453012  0.379449 0.464192 0.504881 0.456339 0.338947 0.387565 0.473454 0.487633 0.450239 0.436904 0.485872 0.494545 0.453472
20 10 0.453259 0.454122 0.454379 0.448603 0.444484 0.449747 0.453258 0.450985 0.445737 0.451889 0.457784 0.449691 0.454865 0.309335
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
15 0.455867 0.454865 0.448814 0.450581 0.454418 0.458664 0.438579 0.451367 0.434433 0.454198 0.444159 0.450655 0.452156 0.454658
20 0.455456 0.452156 0.450043 0.452381 0.459187 0.450439 0.463858 0.447277 0.455134 0.451367 0.434433 0.450142 0.452889 0.434473
25 0.454615 0.452889 0.457007 0.453990 0.453373 0.454659 0.453012 0.455134 0.452054 0.447277 0.455134 0.450623 0.452491 0.443136
30 0.449589 0.452491 0.457787 0.453525 0.454139 0.454448 0.453259 0.453658 0.451394 0.446213 0.453658 0.450508 0.449541 0.455895
35 0.458457 0.455334 0.457921 0.458325 0.455175 0.455622 0.455867 0.450771 0.454839 0.459704 0.455053 0.453060 0.451264 0.454502
40 0.453082  0.452349 0.455897 0.454477 0.454981 0.455080 0.455456 0.454832 0.456928 0.451337 0.452054 0.451690 0.449928 0.456408
45 0.449815 0.456286 0.453335 0.452697 0.454604 0.453757 0.452564 0.453474 0.451538 0.452793 0.453474 0.450673 0.452163 0.455558
5 0.438536  0.494545 0.453472 (0.442839 0.429941 0.446236 0.455134 0.441219 0.386238 0.445801 0.464192 0.494545 0.386238 0.445801
10 0.454685 0.454576 0.453490 0.453279 0.457232 0.450986 0.453658 0.453082 0.446593 0.438536 0.454379 0.454576 0.446593 0.438536
15 0.454379 0.458522 0.452468 0.444129 0.451022 0.446978 0.438536 0.449815 0.457113 0.454685 0.448814 0.458522 0.454379 0.438536
20 0.448814 0.459704 0.455053 0.453247 0.454615 0.457823 0.454685 0.450759 0.458512 0.453082 (0.446593 0.438536 0.448814 0.454685
25 25 0.450043 0.451337 0.452054 0.451428 0.449589 0.445596 0.454329 0.454694 0.461534 0.449815 0.457113 0.454685 0.450043 0.454329
30 0.452163 0.453769 0.451394 0.457187 0.458457 0.454683 0.458512 0.453082 0.446593 0.438536 0.454122 0.454379 0.457007 0.454547
35 0.453664 0.454738 0.454839 0.452106 0.457540 0.455856 0.461534 0.449815 0.457113 0.454685 0.454865 0.448814 0.457787 0.453965
40 0.453429 0.454961 0.456928 0.443146 0.452500 0.449045 0.453664 0.450759 0.453429 0.454694 0.452156 0.450043 0.457921 0.454878
45 0.452010 0.452909 0.451538 0.454631 0.454226 0.455807 0.456286 0.453335 0.450673 0.452163 0.450673 0.452163 0.456286 0.453335
30 5 0.452054 0.447112 0.441219 0.430312 0.435308 0.443358 0.466238 0.445801 0.494545 0.453472 (.386238 0.445801 0.494545 0.453472
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 0.449541 0.458512 0.453082 0.457533 0.458698 0.426904 0.454379 0.441361 0.454576 0.453490 0.446593 0.438536 0.454368 0.434473
15 0.451264 0.461534 0.449815 0.457075 0.463312 0.449820 0.448814 0.454685 0.458522 0.452468 0.457113 0.454685 0.432660 0.451266
20 0.454379 0.453664 0.450759 0.453840 0.458524 0.457213 0.450043 0.454329 0.459704 0.455053 0.457113 0.454685 0.450822 0.453750
25 0.448814 0.453429 0.454694 0.458683 0.445632 0.455091 0.457007 0.454547 0.451337 0.452054 0.454122 0.454379 0.453416 0.449915
30 0.451264 0.452010 0.454371 0.453815 0.433680 0.457421 0.457787 0.453965 0.450508 0.449541 0.454865 0.448814 0.450508 0.449541
35 0.449928 0.456247 0.456556 0.456241 0.451806 0.455932 0.457921 0.454878 0.453060 0.451264 0.453060 0.451264 0.453060 0.451264
40 0.452163 0.454527 0.452791 0.454358 0.454525 0.453775 0.455897 0.457863 0.451690 0.449928 0.451690 0.449928 0.451690 0.449928
45 0.455734  0.454724 0.454102 0.453598 0.453911 0.455819 0.450673 0.452163 0.450673 0.452163 0.450673 0.452163 0.450673 0.452163
5 0.460830 0.433861 0.453046 0.450952 0.441604 0.510441 0.386238 0.445801 0.473454 0.433861 0.473454 0.487633 0.386238 0.445801
10 0.455368 0.444629 0.429335 (0.432625 0.428087 0.457459 0.446593 0.438536 0.450985 0.444629 0.450985 0.445737 0.446593 0.438536
15 0.463326 0.460593 0.454658 0.432792 0.453673 0.454071 0.457113 0.454685 0.451367 0.460593 0.455046 0.463326 0.457113 0.454685
20 0.451211 0.454368 0.434473 (0.454461 0.458705 0.452019 0.454122 0.454379 0.447277 0.454368 0.453710 0.451211 0.451337 0.452054
35 25 0.450084 0.459592 0.443136 0.454260 0.453621 0.455734 0.454865 0.448814 0.455134 0.446593 0.438536 0.457113 0.454685 0.452054
30 0.454878 0.454076 0.455895 0.458809 0.454601 0.460830 0.452156 0.450043 0.453658 0.457113 0.454685 0.454995 0.454329 0.451394
35 0.450043 0.453154 0.454502 0.453593 0.453908 0.455368 0.452889 0.457007 0.450771 0.454995 0.454329 0.454736 0.454547 0.454839
40 0.457007 0.455519 0.456408 0.452324 0.455255 0.456579 0.452349 0.455897 0.451690 0.456083 0.457863 0.451690 0.449928 0.456928
45 0.457787 0.455269 0.455558 0.458029 0.455943 0.456026 0.456286 0.453335 0.450673 0.453655 0.455484 0.450673 0.452163 0.451538
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 0.457921 0.386238 0.445801 0.450319 0.451695 0.445107 0.494545 0.453472 0.379449 0.464192 0.373053 0.354103 0.379449 0.464192
10 0.454685 0.446593 0.438536 0.424814 0.454041 0.449521 0.454576 0.453490 0.454122 0.454379 0.454122 0.454379 0.454122 0.454379
15 0.454329 0.457113 0.454685 0.455704 0.447750 0.460681 0.458522 0.452468 0.454865 0.448814 0.454865 0.448814 0.459704 0.455053
20 0.457863 0.454995 0.454329 0.451024 0.453643 0.457221 0.454865 0.455046 0.463326 0.434473 0.452156 0.450043 0.451337 0.452054
40 25 0.455484 0.454736 0.454547 0.458018 0.454945 0.451081 0.438536 0.453710 0.451211 0.443136 0.452889 0.457007 0.453769 0.451394
30 0.446593 0.453733 0.453965 0.459237 0.457546 0.452369 0.454685 0.453705 0.450084 0.455895 0.452491 0.457787 0.454738 0.454839
35 0.457113 0.456911 0.454878 0.453535 0.455318 0.456386 0.455334 0.457921 0.454878 0.454502 0.455334 0.457921 0.453060 0.454122
40 0.451337 0.456083 0.457863 0.455402 0.446263 0.457617 0.452349 0.455897 0.457863 0.456408 0.452349 0.455897 0.451690 0.454865
45 0.454685 0.453655 0.455484 0.459185 0.438877 0.456187 0.451538 0.450673 0.452163 0.455558 0.450673 0.452163 0.450673 0.452156
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Appendix D
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - RMSE

Testing value

Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 0.557426 0.356290 0.553274 (0.543054 0.519956 (.551161 0.554471 0.545280 0.569370 0.552980 0.545061 (.545061 0.566665 0.370807
10 0.554884 0.552308 0.529606 (0.561660 0.563652 0.554582 0.546305 0.565324 0.551468 0.555437 0.545950 (.565886 0.552171 0.566995
15 0.570969 0.495712 0.564314 (559771 0.564454 0.559346 0.502357 0.551305 0.552172 0.563632 0.560931 (.558982 0.558228 0.553150
20 0.561114 0.545351 0.565647 (0.560656 0.560970 0.552690 0.561663 0.559735 0.562645 0.563088 0.555058 0.558963 0.567871 0.577234
5 25 0.546216 0.569370 0.560891 0.565444 0.567277 0.567565 0.557426 (.555707 0.551600 0.568916 0.545950 0.548200 0.530796 0.564730
30 0.547025 0.563406 0.557888 0.566706 0.555114 0.560557 0.554884 (.567619 0.557726 0.540845 0.546390 0.557672 0.537356 0.569001
35 0.562162 (0.567633 0.564426 (0564762 0.564218 0.562188 0.570969 (.560931 0.557726 (.568341 0.550522 0.566300 0.552059 0.566278
40 0.557232 0.567589 0.557729 (0.571442 0.569437 0.561802 0.569545 (.555058 0.570411 (563577 0.560258 0.567381 0.567526 (.565029
45 0.555108 0.560634 0.561094 0561165 0.565222 0.567859 0.559727 0.565469 0.535820 .567979 0.566061 0.565778 0.571474 (.566133
5 0.566665 (.552980 0.545061 0.566665 (.525453 0.561114 0.551575 0.543054 0.519956 (551161 0.566665 0.535603 (.537654 0.533048
10 0.564171 0.555437 0.545950 (0.548200 0.561187 0.546216 0.553988 0.561660 0.563652 0.554582 0.548200 0.561636 0.544785 0.539980
10 15 0.575181 0.566665 0.546390 (0.557672 0.564957 (0.547025 0.545280 0.569370 0.560891 0.546390 0.557672 0.559771 0.564781 0.568916
20 0.561663 0.564171 0.565886 (0.552171 0.557652 0.562162 0.565324 0.551468 0.549234 0.556331 0.539980 0.560656 0.563620 0.540845
25 0.557426  0.575181 0.558982 (.558228 0.551305 0.557232 0.560809 0.571680 0.544699 0.546762 0.543774 0.565444 0.563632 0.560931
30 0.554884 0.566038 0.558963 (.567871 0.559735 0.555108 0.565411 0.555707 0.551600 0.564171 0.565886 0.566706 (.563088 0.555058
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 0.570969 (.562377 0.560838 (0.562604 0.562500 (564068 0.566940 (567619 0.557726 0.575181 (.558982 0.564762 (0566106 0.564288
40 0.569545 (.552978 0.559959 (.556732 0.562072 (573422 0.571640 (.563632 0.560931 0.572932 0.567381 (.571442 0.552978 0.559959
45 0.559727 0.574284 0.568473 (0.572720 0.567598 (.573173 0.568620 (563088 0.555058 0.566300 0.566061 (.565738 0.574284 0.568473
5 0.562162 (.556654 0.517091 0.546106 0.543153 0.533048 0.536036 (.552980 0.545061 0.566665 0.356290 0.553274 (.330891 0.349321
10 0.557232  0.562322 0.551468 (0.549234 0.556331 0.539980 0.564610 (.555437 0.545950 0.548200 0.552308 0.529606 0.549234 0.552308
15 0.555108 0.560376 0.571680 (.544699 0.546762 0.543774 0.553434 0.572932 0.546390 0.557672 0.495712 0.564314 0.544699 0.495712
20 0.564068 0.558390 0.515865 (.555707 0.551600 0.568341 0.550522 0.566300 0.565647 0.569370 0.560891 0.556649 (.551600 0.560970
15 25 0.573422 0.548461 0.564339 0.567619 0.557726 0.563577 0.560258 0.567381 0.560891 0.555707 0.551600 (.563993 0.563652 0.567277
30 0.573173 0.550966 0.574451 (.558039 0.570411 (564985 0.561179 0.561523 0.557888 0.567619 0.557726 (.572932 0.558822 0.555114
35 0.544478 0.566867 0.555715 0.562728 0.563311 0.561030 0.561330 0.565167 0.564426 0.555707 0.551600 0.568916 0.545950 0.564218
40 0.541548 0.565539 0.566213 0.563369 0.566606 0.554585 (.572641 0.567984 (0.563620 0.567619 (557726 0.540845 (.546390 0.563088
45 0.566592 0.564004 0.565804 (567989 0.556732 0.550805 (.562125 0.561165 (565222 0.567965 (0569476 0.565223 (566061 0.565738
5 0.565283 (0.363251 0.541995 (548481 0.544478 0.320704 (.371707 0.542078 0.540243 (.545061 0.566665 (.370807 0.363251 0.356290
10 0.566995 0.563911 0.563773 0.538573 0.541548 0.565283 0.557324 0.564781 0.568916 0.545950 0.548200 (.539890 0.563911 0.552308
15 0.553150 0.560303 0.543854 0.550189 0.566592 0.566995 0.538048 0.563620 0.540845 0.546390 0.557672 0.561338 0.560303 0.495712
20 0.577234 0.574363 0.562025 (0.567994 0.557043 0.553150 0.562591 0.563632 0.560931 0.557726 0.569370 (0.560891 0.555707 0.551600
20 25 0.566636 0.559101 0.576556 0.556947 0.577976 0.577234 0.565334 0.563088 0.555058 0.570411 0.560970 (.552690 0.567619 0.557726
30 0.570524 0.562729 0.558064 (.555132 0.571274 0.566636 0.564784 0.566106 0.564288 0.563311 0.567277 0.567565 0.562645 0.561811
35 0.557726 0.568325 0.561183 (.564895 0.565565 0.570524 (563577 0.560254 0.568173 0.567381 0.569397 (.562377 0.560838 0.568655
40 0.570411 (.561895 0.562087 0.561401 0.564445 0.562168 (0.562979 0.566061 0.565738 0.565904 0.554766 (.552978 0.559959 0.566738
45 0.563311 (.565168 0.567169 (0564904 0.567661 0.566470 (0.564631 0.558822 0.561165 (571474 0.566133 (574284 0.568473 0.564858
25 5 0.569055 (0.549987 0.542078 (.540243 0.518792 0.531499 0.551330 0.543054 (.519956 0.551161 0.521659 (0.530800 0.552980 0.545061
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Input | Hidden Outliers

Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 0.555707 0.561524 0.564781 (.568916 0.552118 0.546706 0.530690 0.561660 (.563652 0.554582 0.565886 0.552171 (.555437 0.545950
15 0.567619 0.559325 0.563620 (.540845 0.555900 (.546293 0.554967 0.580582 (.558822 0.556494 0.558982 0.558228 0.561536 0.562858
20 0.560254 0.552172 0.563632 0.560931 0.571677 0.563919 0.569055 0.561941 0.559261 0.564909 (.558963 0.567871 0.580582 0.558822
25 0.552118 0.562645 0.563088 (.555058 0.562866 (.541581 0.555707 0.551600 0.563402 0.560254 (.529537 0.569370 0.560891 0.565834
30 0.555900 0.568340 0.566106 (.564288 0.562058 0.564148 0.567619 0.557726 (0.551884 0.551468 0.549234 0.556331 0.539980 0.560315
35 0.571677 0.567798 0.560254 (.568173 0.565172 0.561547 0.560254 0.529537 (.569792 0.571680 0.544699 0.546762 0.543774 0.573150
40 0.562866 (.568096 0.569829 (.534214 0.564522 0.562018 0.546762 0.572096 0.568818 0.555132 0.571274 0.566636 0.558390 0.515865
45 0.562058 (0.568098 0.561325 (.569911 0.568147 0.565195 (.565738 0.565221 (565223 0.564895 (0.565565 0.570524 (.548461 0.564339
5 0.561523 0.523496 0.535089 (.521659 0.530800 (.527016 0.515865 0.552980 0.545061 0.540243 (518792 0.535603 (537654 0.562058
10 0.565167 0.552656 0.553147 0.561523 0.543810 0.520207 0.558982 0.555437 0.545950 0.555707 (0.551600 0.561636 0.544785 0.565172
15 0.567984 0.561536 0.562858 (0.565167 0.551094 0.544458 0.558963 0.544785 0.560458 0.567619 (.557726 0.546390 0.557672 0.530796
20 0.563380 0.580582 0.558822 (.567984 0.560888 0.551678 0.509376 0.558338 0.563402 0.551600 (.561536 0.565647 0.569370 0.537356

30 25 0.560254 0.561941 0.559261 (.563380 0.541042 0.561377 0.556780 0.564678 0.551884 0.557726 0.580582 0.565886 0.552171 0.552059
30 0.552980 0.560846 0.565834 (.560254 0.529537 0.565575 0.569187 0.548272 0.569792 0.570411 0.561941 0.558982 0.558228 0.560458
35 0.555437 0.565040 0.560315 (.563233 0.564176 (566282 0.544699 0.551468 (552039 0.556331 (.539980 0.558963 (567871 0.563402
40 0.544785 0.572096 0.573150 (0.564345 0.565000 0.568818 0.555707 0.571680 (.544699 0.546762 (.543774 0.509376 0561636 0.551884
45 0.557726  0.565221 0.565403  0.567965 0.569476 0.565223 (.569370 0.560891 0.566061 0.565738 0.564730 0.563235 0.560732 0.569792
5 0.561536  0.547613 0.559003 0.551196 0.535368 0.522871 0.565886 0.535603 0.537654 0.552980 0.545061 0.543054 0.519956 0.551161
10 0.560376 0.540774 0.520609 (.524275 0.536603 (.560458 0.558982 0.561636 0.544785 0.555437 0.545950 0.561660 (.563652 0.554582

35 15 0.551196 0.552105 0.572007 0.525988 0.556649 (0.563402 0.558963 0.565886 0.552171 0.560732 0.558338 0.570411 (.560970 0.552690
20 0.524275 0.567269 0.530796 (0.564730 0.563993 (.551884 0.548200 0.558982 0.558228 0.556494 0.564678 0.563311 0.567277 0.567565
25 0.525988 0.565124 0.537356 0.569001 0.572932 (.569792 0.557672 0.558963 0.567871 (.557726 0.546390 (.555707 0.551600 0.544699
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 0.564730 0.556780 0.552059 0.566278 0.566300 (552039 0.557726 0.569370 0.560891 (561536 0.565647 (0.567619 0.557726 0.555707
35 0.569001 (0.569187 0.567526 (0.565029 0.567381 0.569397 0.570411 0.560970 0.552690 (.560376 0.571680 (.544699 0.569370 0.560891
40 0.572932  0.560996 0.565171 (0.563763 0.565904 0.554766 (564781 0.564171 (565886 0.558390 0.515865 (.555707 0.558064 0.555132
45 0.566300 0.566061 0.565738 (0.565778 0.571474 0.566133 (0.563620 0.575181 (.558982 0.548461 0.564339 (.567619 0.561183 0.564895
5 0.567381 0.370807 0.551330 0.570196 0.535603 0.537654 (0.552980 0.545061 0.566282 0.543054 0519956 0.551161 0.370807 0.551330
10 0.565904 (.539890 0.530690 (.50937¢ 0.561636 0.544785 0.555437 0.545950 0.551468 0.561660 0.563652 0.554582 0.539890 0.530690
15 0.551600 (.561338 0.554967 (0.563235 0.560732 0.558338 0.563402 0.558963 0.571680 0.544699 0.546762 0.543774 0.548200 0.558982
20 0.557726  0.567204 0.569055 (.548150 0.556494 0.564678 0.551884 0.548200 0.567277 0.557726 0.569370 0.560891 0.555707 0.551600
40 25 0.569370 (.575877 0.564041 (0.561811 0.564909 0.548272 0.569370 0.560891 0.551600 0.570411 0.565886 0.552171 0.567619 0.557726
30 0.543774 0.571908 0.568133 (0.568655 0.566726 0.563573 0.551468 0.549234 0.557726 0.563311 0.558982 0.558228 (.567565 0.563919
35 0.560891 0.572151 0.567362 0.566738 0.565099 0.556569 0.577976 0.577234 0.569370 0.567381 (.558963 0.567871 (.562377 0.541581
40 0.552171 0.566037 0.565972 (.564858 0.549672 (0564689 0.571274 0.566636 0.572007 0.565904 (566300 0.552039 (552978 0.564148
45 0.558228 0.557300 0.562345 (0565469 0.535820 (.567979 0.566061 (565738 0.530796 0.566470 (564631 0.558822 (571680 0.544699
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Appendix E

Training value

Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - GRMSE

Input | Hidden Outliers
Lags Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 1.445223 1.346845 1.477029 1500989 1.506603 1441607 1.444452 1.434973 1417198 1.410276 1.451130 1.427408 1.441443 1.446190
10 1.444398 1.437884 1.504271 1444792 1.447011 1.434398 1.438254 1.449961 1.455920 1.453478 1.441870 1456707 1.442617 1.445433
15 1.449710 1.421189 1.447091 1446190 1.453353 1.447446 1.432057 1.444904 1.455499 1.446703 1.450587 1.450689 1.448218 1.446079
20 1.451405 1.446549 1.450730 1445433 1.443758 1.442117 1.448107 1.442758 1.449728 1.456207 1.458408 1.444398 1.446057 1.450623
5 25 1.454615 1.450163 1.445129 1446079 1.450689 1.448218 1.448131 1445223 1.444904 1.455499 1.465102 1.451405 1.442048 1.448643
30 1.445049 1.446016 1.444574 1450623 1.444398 1.446057 1.441659 1446797 1.439107 1.447177 1.376593 1.454615 1.446219 1.416202
35 1.446219 1.449689 1.447058 1448643 1.449710 1.448353 1.452288 1452551 1.465315 1452276 1.451202 1.445049 1.445329 1.451953
40 1.445329 1.447670 1.445135 1449889 1.451767 1.447773 1.451396 1455573 1.452073 1.455246 1.452299 1.447235 1.450842 1.423138
45 1.450842 1.446214 1.448380 1445632 1.448259 1.448223 1.446851 1452407 1.451439 1447416 1.448338 1.446797 1.439107 1.443930
5 1.450324 1480704 1.503867 1.444047 1.407287 1.445143 1.484453 1427408 1.441443 1416202 1.455573 1.452073 1434973 1.417198
10 1.447965 1.446797 1.439107 1.443930 1.453180 1441149 1.444821 1.456707 1.442617 1.451953 1.452407 1.451439 1.449961 1.455920
10 15 1.455499 1.452551 1.465315 1442758 1.451405 1.442048 1.439429 1.383593 1.445927 1.423138 1.444904 1.455499 1.465102 1.445069
20 1.446219 1.450610 1.446958 1.445223 1.454615 1.446219 1.445705 1.451202 1.451405 1.442048 1.442758 1.451405 1.442048 1.438922
25 1.442048 1.450572 1.445401 1443018 1.445049 1.445329 1.447284 1.452299 1.454615 1.446219 1.445223 1.454615 1.446219 1.432325
30 1.446219 1.447523 1.448496 1448217 1.447235 1.450842 1.450630 1.448338 1.445049 1.445329 1.444398 1.446057 1447177 1.444189
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Input | Hidden Outliers
Lags Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 1.449710 1448231 1.445184 1448927 1.445927 1453886 1.448525 1410276 1.451130 1.450842 1449710 1.448353 1452276 1.445223
40 1.451767 1.450511 1.447191 1446765 1.451277 1452019 1.449784 1453478 1.441870 1.451202 1.451767 1447773 1.455246 1.443018
45 1.448259 1453390 1.449494 1447344 1450278 1449827 1.449801 1446703 1.450587 1.452299 1.448223 1446851 1.447416 1.448217
5 1.458768 1.445604 1.427408 1.441443 1.433336 1.428106 1.425656 1452678 1.374507 1.446797 1.439107 1.325635 1.444398 1.446057
10 1.450086 1.448283 1.456707 1442617 1.444976 1.437671 1.455385 1.450540 1.451953 1.452551 1.465315 1.444811 1.449710 1.448353
15 1.451171 1.451336 1436789 1446726 1.438922 1.437589 1.457382 1.448353 1.423138 1.455573 1.452073 1.457887 1.451767 1.447773
20 1.452724 1.447210 1.423283 1446502 1.432325 1.450324 1.453195 1.447773 1.442758 1.444904 1.455499 1.465102 1445069 1.448627
15 25 1.454615 1.441303 1.452678 1451250 1.444189 1.447965 1.447473 1.451130 1.445223 1.454615 1.446219 1427408 1.441443 1.451032
30 1.410276 1.439753 1.450540 1452147 1.451026 1452162 1.452204 1.441870 1.447177 1.451405 1.442048 1.456707 1.442617 1.450366
35 1.453478 1.450609 1.446355 1448648 1.449132 1.451909 1.449036 1.445900 1.452276 1.454615 1446219 1.453759 1.433298 1.451130
40 1.450587 1.449317 1.452218 1.453809 1.450444 1.448845 1453756 1.446765 1455246 1.445049 1445329 1.453151 1.453478 1.441870
45 1.451439  1.449248 1.450243 1453409 1.450402 1.440949 1451352 1.447344 1447416 1.447235 1450842 1.448921 1446703 1.450587
5 1.457600 1354567 1.466875 1531898 1.454816 1.304435 1365072 1.434973 1.417198 1.353026 1.446797 1439107 1.416202 1.300325
10 1.456202 1.451202 1.451583 1.443505 1.437337 1.444811 1.449985 1.449961 1.455920 1.444811 1.452551 1465315 1.451953 1.444811
15 1.448819 1.452299 1.443552 1446079 1.451624 1.457887 1.428885 1.444904 1.455499 1.465102 1.445069 1455691 1.457600 1.452011
20 1.449955 1.448338 1.445248 1448627 1.458768 1.445900 1.465681 1.427408 1.441443 1.451202 1.531898 1.442758 1.451405 1.442048
20 25 1.452563 1.449414 1455420 1451032 1.450086 1.451954 1.449566 1.456707 1.442617 1.452299 1.451405 1442048 1.454615 1.446219
30 1.448201 1.448814 1.456642 1450366 1.451171 1.451654 1.449933 1.447177 1.455920 1.448338 1.454615 1.446219 1.404695 1.451130
35 1.447177 1.452946 1.456820 1457370 1.452724 1.453378 1.453759 1.452276 1.446798 1.444398 1.445049 1.445329 1.453478 1.441870
40 1.450587 1.448597 1.453808 1.451696 1.452428 1.451032 1453151 1.455246 1.451859 1.449710 1.447235 1450842 1.446703 1.450587
45 1.456615 1454364 1450035 1449111 1.451869 1.450642 1448921 1.447416 1.444555 1451767 1.447773 1.435574 1.452407 1.451439
25 5 1.365482 1514594 1.450577 1434973 1.417198 1.440302 1.447235 1.444398 1446057 1.451495 1450756 1422079 1.433432 1.543961
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Input | Hidden Outliers
Lags Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 1.451202 1.451852 1.450271 1.449961 1.455920 1.446804 1.416202 1.449710 1.448353 1.442758 1.451405 1.442048 1414062 1.456104
15 1.457887 1.457740 1.448754 1436855 1.446798 1440860 1.451953 1.451767 1447773 1.445223 1.454615 1.446219 1.450549 1.451108
20 1.445900 1.459548 1.452563 1.449955 1.451859 1456615 1.423138 1.455573 1.451405 1.442048 1416202 1.450483 1.446797 1.439107
25 1.451954 1.447244 1448201 1447279 1.444555 1438921 1.354567 1.452407 1.454615 1.446219 1451953 1.450187 1.452551 1.465315
30 1.451654 1.450630 1.447177 1455691 1.457600 1.452011 1.451202 1.457928 1445049 1.445329 1.423138 1.448079 1.454520 1.452276
35 1.455499 1452063 1.452276 1448223 1.456202 1.453762 1.452299 1.450756 1447235 1.450842 1.410276 1.451130 1.456292 1.455246
40 1.444398 1452424 1455246 1435574 1.448819 1.443777 1.448338 1.454281 1.448627 1.458768 1.453478 1.441870 1.441443 1.446057
45 1.449710 1449364 1.447416 1451898 1.451289 1.453657 1.444904 1.455499 1465102 1.445009 1446703 1.450587 1.442617 1.448353
5 1.445329 1.441992 1.432807 1417612 1.424416 1436258 1.448223 1.405633 1434973 1.417198 1446797 1.439107 1448627 1.458768
10 1.450842 1.457733 1449728 1456207 1.458408 1.432802 1.435574 1.451202 1.449961 1.455920 1452551 1.465315 1.451032 1.450086
15 1.444540 1.462197 1.444904 1455499 1.465102 1.445069 1.451405 1.452299 1.435429 1.449710 1448353 1.444398 1.446057 1.451993
20 1.460901 1.450483 1.446322 1450750 1.457759 1.455824 1.454615 1.448338 1.451202 1.455573 1.452073 1.449710 1.448353 1.450580
30 25 1.455680 1.450187 1.452033 1.457928 1.438956 1.452605 1.445049 1.445329 1.457887 1.452407 1.451439 1.451767 1.447773 1.455361
30 1.456292 1.448079 1.451495 1450756 1.422079 1.456024 1.447235 1.450842 1.445900 1.451710 1.458011 1.410276 1.451130 1.447177
35 1.423138 1454286 1.454784 1454281 1.447755 1453825 1.416202 1.451993 1451748 1.451366 1450378 1.453478 1.441870 1.452276
40 1.435407 1.451755 1.449175 1451522 1.451758 1.450625 1.451953 1.451405 1.442048 1.458057 1.451827 1.446703 1450587 1.455246
45 1.453868 1.452023 1.451109 1450394 1.450826 1.453669 1423138 1.454615 1446219 1.446797 1439107 1.451405 1442048 1.447416
5 1.455920 1.422284 1.449952 1446631 1.433432 1.543961 1.448627 1.458768 1451492 1.444904 1.455499 1.465102 1445069 1.412802
10 1.455499 1.437500 1.416202 1420771 1.414062 1456104 1.451032 1.450086 1.459245 1.453271 1.456899 1.450850 1.451202 1.445069
35 15 1.441443 1.460848 1.451953 1.420980 1.450549 1451108 1.457928 1.434973 1.417198 1.456207 1.458408 1.458408 1452299 1.455824
20 1.448338 1.451492 1.423138 1451710 1.458011 1448389 1.450756 1.449961 1.455920 1.455499 1.465102 1.465102 1.448338 1.455920
25 1.445329 1.459245 1.435407 1451366 1.450378 1453463 1.455573 1.452073 1.444398 1.446057 1.455573 1452073 1.416202 1.455499
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Input | Hidden Outliers
Lags Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 1.450842 1.451147 1.453868 1.458057 1.451827 1461227 1.452407 1.451439 1.449710 1448353 1.452407 1.447177 1.451953 1.444398
35 1.451993  1.449742 1.451682 1450367 1.450850 1.452952 1.451993 1.451748 1.451767 1.447773 1.450587 1.452276 1.423138 1.449710
40 1.451405 1453233 1.454528 1.448529 1.452810 1.454844 1451495 1.451405 1442048 1.451405 1.442048 1455246 1.410276 1.354567
45 1.454615 1.452834 1.453271 1.456899 1.453825 1.453925 1454784 1.454615 1446219 1.454615 1.446219 1447416 1.448353 1.451202
5 1.442048 1362943 1.439142 1446686 1.448232 1.438326 1434973 1417198 1450850 1.445049 1445329 1.458408 1.420980 1.452299
10 1.446219 1440488 1.428989 1.41027¢ 1.451130 1.444540 1.449961 1.455920 1.458408 1.447235 1.450842 1.465102 1.451710 1.448338
15 1.445329 1455573 1452073 1453478 1.441870 1.460901 1.444904 1.455499 1.465102 1.434973 1.417198 1.455573 1.451366 1.449710
20 1.450842  1.452407 1451439 1446703 1.450587 1.455680 1.434973 1.444398 1.446057 1.446797 1.439107 1.452407 1.458057 1.451767
40 25 1.448353 1451993 1451748 1456933 1.452335 1.446830 1.449961 1.449710 1.448353 1.452551 1.465315 1.448353 1.450367 1.442048
30 1.447773 1.450580 1.450921 1458677 1456179 1.448594 1.447177 1.451767 1.453868 1.458057 1.451827 1.447773 1.451405 1.442048
35 1.451130 1.455361 1.452210 1450236 1.452866 1454520 1.452276 1.416202 1.451682 1.450367 1.450850 1.450367 1.454615 1.446219
40 1.441870 1.454017 1.456644 1453010 1.439784 1456292 1.455246 1.451953 1.454528 1.448529 1452810 1.448529 1448627 1.458768
45 1.554320 1450496 1.453195 1.458581 1.429291 1454151 1.447416 1423138 1.455499 1.465102 1445069 1.456899 1.451032 1.450086
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Appendix F
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I - GRMSE

Testing value

Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 1.566099 1.294195 1.544594 1520413 1.495997 1541293 1.546394 1.561984 1549773 1.557989 1.575771 1.566615 1.566550 1.569992
10 1.551189 1.543007 1.509823 1557372 1.560442 1.546466 1.533969 1.536896 1.554719 1.549773 1.567745 1.551764 1.555651 1.542610
15 1.541530 1.461775 1.567745 1567745 1.561749 1.553781 1.471023 1.560260 1.567964 1.574660 1.560319 1558991 1.558185 1.569370
20 1.554372 1.532608 1.560319 1560319 1.556293 1.543596 1.557366 1.504003 1.544319 1.502453 1.562503 1.559993 1.561984 1.546752
5 25 1.558646 1.569380 1.562503 1562503 1.566099 1.566550 1.550834 1562086 1.581822 1.559742 1.556371 1.565133 1.567745 1.564259
30 1.542823 1.560068 1.556371 1556371 1.547313 1.555651 1.546936 1.568748 1.565068 1.549136 1.524510 1.561243 1.560319 1.551189
35 1.552060 1566667 1.561644 1562168 1.561330 1.558185 1.571906 1564491 1.571189 1534634 1.530147 1.578564 1.562503 1.541530
40 1.567022 1.566585 1.551292 1572645 1.569485 1.557579 1.569656 1561475 1.554447 1553220 1.552060 1.564148 1.556371 1.554372
45 1.558808 1.555771 1.556482 1561644 1.562886 1.567007 1.554369 1.563563 1.555798 1553188 1.567022 1.567745 1.567745 1.558646
5 1.558808 1.544156¢ 1.532404 1.556592 1.503232 1.556533 1.542051 1.549136 1.524510 1566615 1.552060 1.569992 1567745 1.547313
10 1.549773 1.547891 1.533414 1536826 1.556625 1533823 1.545576 1.534634 1.530147 1.551764 1.567022 1.542610 1.560319 1.561330
10 15 1.574660 1.565133 1.534176 1551200 1.562466 1535032 1.532411 1.542823 1.555651 1.561984 1.558808 1.569370 1.562503 1.569485
20 1.504003 1.561243 1.563913 1542823 1.551189 1.558120 1.563035 1.552060 1.558185 1.536896 1.567745 1.546752 1.556371 1.554322
25 1.562086 1.578564 1.553220 1552060 1.541530 1.550525 1.556036 1.567022 1.557579 1.560260 1.566550 1.564259 1.558808 1.561984
30 1.568748 1.564148 1.553188 1.567022 1.554372 1.547284 1.563175 1.558808 1.567745 1.544319 1.555651 1.546936 1.549773 1.536896
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 1.564491 1558459 1.556071 1558808 1.558646 1561086 1.565561 1571615 1.560319 1.581822 1558185 L1.571906 1574660 1.560260
40 1.562503  1.544044 1.554719 1549773 1.557989 1.575771 1.572951 1530423 1.562503 1.565068 1.560319 1555170 1.562503 1.577256
45 1.556371 1.577138 1.567964 1.574660 1.566591 1575374 1.568192 1559742 1.556371 1.571189 1.562503 1556601 1.556371 1.553382
5 1.561984 1.549632 1.491363 1.533643 1.529212 1.514292 1.518664 1542823 1.558808 1.569992 1.566615 1.509148 1.563401 1.571615
10 1.536896 1.558455 1.541766 1538348 1.549136 1.524510 1.561923 1552060 1.549773 1.542610 1.551764 1.561213 1.564501 1.480423
15 1.560260 1.555357 1.573014 1531556 1.534634 1.530147 1.544747 1.567022 1.574660 1.569370 1.558991 1.544319 1.558808 1.566550
20 1.549773 1.552298 1.489631 548214 1.541934 1.567745 1.540325 1.558808 1.504003 1.546752 1.559993 1.581822 1563035 1.555651
15 25 1.574660 1.537179 1.561496 1566615 1.551277 1.560319 1.555170 1.567745 1.562086 1.564259 1.556371 1565068 1.562179 1.558185
30 1.544319 1.540959 1.577394 1551764 1.571001 1562503 1.556601 1.560319 1.568748 1.566550 1.550834 1549773 1.557989 1.575771
35 1.581822 1.565439 1.548197 1558991 1.559897 1.556371 1.556827 1.562503 1.564491 1.555651 1546936 1.567193 1.550248 1.571615
40 1.565068 1563363 1.564418 1.559993 1.565029 1.546506 1574523 1.556371 1573214 1.558185 1571906 1.550081 1.583020 1.480423
45 1.571189 1560976 1.563780 1567201 1.564491 1.540718 1558060 1.567964 1574660 1.566591 1575374 1.547306 1572354 1.559742
5 1.558185 1.301676 1.527605 1537724 1.531247 1.257188 1.310897 1.559535 1.558808 1527646 1.524876 1.504534 1.566615 1.326747
10 1.567745 1.560822 1.560609 1522468 1.526826 1.562951 1.550655 1.564230 1.549773 1.549136 1.524510 1569992 1.551764 1.552060
15 1.560319 1.555238 1.530340 1539802 1.565000 1.565637 1.521623 1.555168 1.574660 1.534634 1.530147 1542610 1.558991 1.567022
20 1.562503 1.577256 1.557890 1567193 1.550248 1.544319 1.558808 1.566550 1.550834 1.571615 1.544319 1569370 1.559993 1.558808
20 25 1.556371 1.553382 1.580744 1550081 1.583020 1.581822 1.563035 1.555651 1.546936 1.503433 1.581822 1546752 1.569992 1.542823
30 1.542823 1.558986 1.551806 1.547306 1.572354 1.565068 1.562179 1.558185 1.571906 1.567745 1.565068 1.564259 1.542610 1.504003
35 1.552060 1.567715 1.556605 1562361 1.563398 1.571189 1560306 1.561984 1.556199 1.560319 1.571189 1.555651 1.569370 1.562086
40 1.567022 1557698 1.557996 1556933 1.561652 1.551806 1559379 1.536896 1.547181 1.562503 1.581822 1563035 1.546752 1.568748
45 1.558808 1.562781 1.565900 1562371 1.566673 1.564809 1561940 1.560260 1.561406 1556371 1.565068 1562179 1.594353 1.564491
25 5 1.561984 1539833 1.527646 1524876 1.493716 1.512063 1.549136 1.500245 1571615 1.558808 1.572983 1.544319 1.558808 1.568748
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 1.536896 1.557115 1.562180 1.568635 1.542728 1.534575 1.534634 1.530147 1.474956¢ 1.549773 1.559185 1.581822 1549773 1.564491
15 1.560260 1.553736 1.560358 1525774 1.548538 1.533928 1.566550 1.550834 1559742 1.574660 1.557952 1.565068 1.558808 1.556199
20 1.569992 1.542823 1.560383 1.556199 1.572983 1560834 1.555651 1.546936 1.562345 1.559165 1555651 1.571189 1.549773 1.547181
25 1.542610 1.558856 1.559535 1.547181 1.559185 1526875 1.558185 1.571906 1.565180 1.552940 1558185 1.569992 1.574660 1.561406
30 1.569370 1.567729 1.564230 1561406 1.557952 1.561187 1.561984 1.542823 1.562638 1.553615 1.561984 1.542610 1.504003 1.567471
35 1.546752 1566879 1.555168 1.567471 1.562781 1.557157 1.536896 1.552060 1567715 1.556881 1.558185 1.569370 1.562086 1.555651
40 1.564259 1567356 1.570069 1516011 1.561761 1.557870 1.560260 1.567022 1.557698 1.563401 1.561984 1.546752 1.568748 1.558185
45 1.562781 1.567348 1.556813 1.570204 1.567425 1.562816 1.552060 1.558808 1562781 1.564501 1536896 1.564259 1.564491 1.561984
5 1.559535 1500522 1.517274 1497792 1.510990 1.505549 1.571615 1.549843 1571906 1.571189 1562763 1.560565 1553265 1.561984
10 1.564230 1.543546 1.544263 1557112 1.530249 1.495709 1.542823 1.566435 1.562534 1.566211 1562086 1.560937 1.432913 1.536896
15 1.555168 1.557144 1.559165 1562763 1.541206 1.531166 1.552060 1.567745 1.572983 1.555651 1.568748 1.574949 1.573486 1.560260
20 1.560319 1.587174 1.552940 1567160 1.556169 1.542057 1.567022 1.560319 1.559185 1.558185 1.571189 1.564259 1.544319 1.569992
30 25 1.562503 1.557779 1.553615 1559991 1.526064 1.556881 1.558808 1.562503 1.557952 1.561984 1.566550 1.550834 1.581822 1.542610
30 1.556371 1.556056 1.563798 1555145 1.509148 1.563401 1.571615 1.556371 1.549136 1.524510 1.555651 1.546936 1.565068 1.569370
35 1.504003 1.562565 1.555244 1559755 1.561213 1564501 1.480423 1.549773 1534634 1.530147 1558185 1.571906 1571189 1.546752
40 1.562086 1573634 1.575306 1.561490 1.562499 1.568469 1.559742 1.574660 1542416 1.549136 1524510 1.556371 1.569992 1.564259
45 1.568748 1.562843 1.563126 1567131 1.569504 1.562854 1542823 1.571906 1569992 1.534634 1530147 1.544319 1542610 1.553615
5 1.564491 1.535925 1.553265 1541294 1.517675 1.500459 1.558808 1.559185 1567745 1.572983 1.558185 1.571906 1567745 1.567745
10 1.547025 1.525646 1.496281 1501543 1.519445 1555457 1549773 1.557952 1.560319 1.559185 1.561984 1.556199 1560319 1.560319
35 15 1.568825 1.542709 1.573486 1.504003 1.549601 1560006 1.574660 1.567745 1.562503 1.557952 1.536896 1.547181 1562503 1.562503
20 1.560991 1.566033 1.510966 1562086 1.560937 1542416 1.549136 1.524510 1.556371 1.569992 1.571615 1.566615 1.569992 1.556371
25 1.567378 1.562694 1.520602 1568748 1.574949 1569992 1.534634 1.530147 1.544319 1542610 1.497732 1551764 1.542610 1.555651
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 1.571615 1.549843 1.542612 1564491 1.564516 1542610 1.566550 1.550834 1.581822 1569370 1.559742 1.558991 1.569370 1.558185
35 1.491123 1569077 1.566435 1562534 1.566211 1.569370 1.555651 1.546936 1.565068 1.546752 1.567435 1559993 1.546752 1.561984
40 1.559742 1556284 1.562763 1.560565 1.563902 1.546752 1558185 1.571906 1571189 1.564259 1.504003 1550834 1.564259 1.476543
45 1.493210 1.564147 1.563644 1563712 1.572649 1.564259 1502110 1.569992 1544440 1.532101 1.562086 1.546936 1.560260 1.562503
5 1.504003 1309892 1.541490 1571615 1.518112 1.521043 1572983 1.542610 1566615 1.558808 1568748 1.552060 1.541530 1.550834
10 1.562086 1.524355 1.510831 1.480423 1.557263 1.531659 1.559185 1.569370 1.551764 1.549773 1.564491 1.567022 1.554372 1.546936
15 1.568748 1556808 1.547025 1559742 1.555854 1.552204 1.557952 1.546752 1.558991 1.574660 1.560032 1.558808 1.558646 1.571906
20 1.564491 1565924 1.568825 1.536700 1.549355 1.561984 1.567745 1.564259 1.559993 1.566550 1.550834 1.549773 1.557989 1.569992
40 25 1.554321 1579618 1.560991 1557541 1.562345 1.536896 1.560319 1.549136 1.524510 1.555651 1.546936 1.568748 1.560319 1.567435
30 1.544319 1573320 1.567378 1568204 1.565180 1.560260 1.562503 1.534634 1.530147 1.542823 1.571906 1.564491 1562503 1.504003
35 1.581822 1.573709 1.566170 1565193 1.562638 1.549498 1.556371 1.543552 1.555651 1.552060 1549773 1.557952 1.556371 1.562086
40 1.565068 1564101 1.564005 1562262 1.538973 1562004 1.560565 1.563902 1.558185 1.567022 1574660 1.567745 1559742 1.574660
45 1.571189 1.550588 1.558366 1563224 1.518317 1567146 1.563712 1572649 1.561984 1.558808 1.549136 1.524510 1542823 1.571906

148




Appendix G
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I1 - RMSE

Training value

Input | Hidden Outliers

Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 0.621849 0.762099 0.649943 0.601084 0.322232 0.761779 0.756135 0.736474 0.761514 0.339530 0.602617 0.319408 0.762255 0.766538
10 | 0.755175 0.655556 0.763529 0.727068 0.656363 0.757960 0.712695 0.703071 0.678108 0.622531 0.761030 0.722989 0.752929 0.746775
15 | 0.701901 0.699004 0.694056 0.654595 0.643149 0.685932 0.628105 0.777896 0.714377 0.761985 0.707293 0.738298 0.675278 0.748157
20 | 0.701901 0.716917 0.618915 0.699732 0.616656 0.671680 0.693679 0.700626 0.665571 0.775970 0.760270 0.693491 0.733879  0.737100

5 25 | 0.704822 0.659350 0.695823 0.678612 0.637604 0.675647 0.654111 0.736921 0.754066 0.764418 0.754066 0.687683 0.750911 0.751044
30 | 0.739789 0.693320 0.663364 0.651883 0.669010 0.687683 0.707293 0.750911 0.797605 0.763470 0.755823 0.740089 0.749426 0.746581
35 | 0.680414 0.728295 0.706282 0.631261 0.662381 0.777775 0.750449 0.716858 0.743508 0.734228 0.764020 0.748171 0.761985 0.723298
40 | 0.703717 0.753300 0.717546 0.718109 0.735626 0.737629 0.748802 0.746581 0.745776 0.734341 0.740089 0.762255 0.775970 0.706282
45 | 0.668707 0.730528 0.687835 0.674892 0.721213 0.733503 0.742860 0.723298 0.742905 0.733577 0.722989 0.752929 0.764418 0.717546
5 0303667 0.761041 0.763557 0.488978 0.492325 0.761514 0.322814 0.602617 0.321025 0.777896 0.750449 0.716858 0.743508 0.734228
10 | 0.628105 0.701594 0.760511 0.706288 0.753593 0.678108 0.622531 0.761030 0.693679 0.700626 0.748802 0.746581 0.745776 0.734341
15 | 0.693679 0.706635 0.711331 0.659283 0.627584 0.714377 0.671680 0.699004 0.654111 0.736921 0.742860 0.723298 0.742905 0.733577

10 20 | 0.654111 0.640685 0.757981 0.660057 0.678953 0.665571 0.675647 0.716917 0.707293 0.750911 0.757960 0.712695 0.706282 0.631261
25 | 0.707293 0.738298 0.675278 0.700760 0.657789 0.754066 0.687683 0.659350 0.695823 0.749426 0.720756 0.766538 0.717546 0.718109
30 | 0.760270 0.693491 0.733879 0.729471 0.746141 0.797605 0.777775 0.693320 0.663364 0.761985 0.720756 0.746775 0.740089 0.762255
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%

35 0.740598 0.725060 0.725466 0.668557 0.661120 0.728295 0.706282 0.631261 0.645380 0.775970 0.735342 0.748157 0.722989 0.752929

40 0.761584 0.736872 0.720481 0.749989 0.677001 0.753300 0.717546 0.755823 0.628105 0.764418 0.725466 0.737100 0.737629 0.742906

45 0.759970 0.746195 0.745656 0.733853 0.736863 0.777775 0.693320 0.764020 0.748171 0.763470 0.720481 0.751044 0.733503 0.701899

5 0.322547 0.755417 0.750031 0.318456 0.675262 0.736474 0.761514 0.322814 0.602617 0.761779 0.756135 0.736474 0.766538 0.290394

10 0.696928 0.721073 0.729681 0.633985 0.770636 0.703071 0.678108 0.622531 0.761030 0.757960 0.712695 0.703071 0.746775 0.775970

15 0.711040 0.761720 0.720756 0.577605 0.671680 0.716858 0.728295 0.706282 0.631261 0.699004 0.694056 0.714377 0.748157 0.764418

20 0.684826 0.786814 0.720756 0.712896 0.675647 0.746581 0.753300 0.717546 0.718109 0.716917 0.618915 0.665571 0.737100 0.763470

15 25 0.764401 0.743518 0.735342 0.705336 0.687683 0.723298 0.777896 0.628105 0.671680 0.659350 0.695823 0.754066 0.755823 0.761895
30 0.719133  0.748665 0.755971 0.738210 0.777775 0.706282 0.700626 0.693679 0.675647 0.693320 0.663364 0.797605 0.764020 0.748171

35 0.749783 0.741873 0.737537 0.761761 0.723271 0.717546 0.736921 0.750449 0.716858 0.743508 0.734228 0.740089 0.762255 0.777775

40 0.754241 0.762835 0.737629 0.742906 0.677495 0.756135 0.750911 0.748802 0.746581 0.745776 0.734341 0.722989 0.752929 0.706282

45 0.721649 0.750774 0.733503 0.701899 0.722917 0.744392 0.749426 0.742860 0.723298 0.742905 0.733577 0.730331 0.740720 0.717546

5 0.755125 0.761514 0.322814 0.602617 0.617119 0.777896 0.714377 0.750449 0.716858 0.743508 0.734228 0.743508 0.321930 0.734228

10 0.695285 0.678108 0.622531 0.761030 0.681942 0.700626 0.665571 0.748802 0.746581 0.745776 0.734341 0.745776 0.734341 0.734341

15 0.743129 0.711327 0.764488 0.746604 0.750473 0.736921 0.754066 0.742860 0.723298 0.742905 0.733577 0.699004 0.694056 0.733577

20 0.748858 0.687405 0.700996 0.694896 0.657791 0.750911 0.797605 0.728295 0.706282 0.631261 0.675647 0.716917 0.618915 0.707293

20 25 0.730331 0.740720 0.751165 0.651071 0.751143 0.749426 0.766538 0.753300 0.717546 0.718109 0.687683 0.659350 0.695823 0.712484
30 0.722491 0.738738 0.763710 0.761518 0.718049 0.761985 0.746775 0.761779 0.756135 0.736474 0.777775 0.693320 0.663364 0.706282

35 0.734710 0.746364 0.754324 0.729984 0.620632 0.775970 0.748157 0.757960 0.712695 0.703071 0.765479 0.740568 0.673217 0.764274

40 0.744706 0.753857 0.732753 0.683587 0.725072 0.764418 0.737100 0.737629 0.742906 0.740089 0.762255 0.755823 0.734228 0.754135

45 0.755147 0.759595 0.737498 0.725444 0.725917 0.763470 0.751044 0.733503 0.701899 0.722989 0.752929 0.764020 0.748171 0.723198

25 5 0.761779 0.756135 0.736474 0.322181 0.673217 0.628105 0.751165 0.312548 0.673217 0.665432 0.654321 0.761514 0.322814 0.602617
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%

10 0.757960 0.712695 0.703071 0.676706 0.702495 0.693679 0.763710 0.676706 0.702495 0.671680 0.699004 0.678108 0.622531 0.761030

15 0.726048 0.777896 0.765479 0.740568 0.797990 0.654111 0.754324 0.766538 0.761985 0.675647 0.716917 0.618915 0.763710 0.761518

20 0.725912  0.700626 0.764274 0.776312 0.744186 0.707293 0.736474 0.746775 0.775970 0.687683 0.659350 0.695823 0.754324 0.729984

25 0.725912  0.736921 0.754135 0.752916 0.731470 0.714377 0.703071 0.748157 0.764418 0.777775 0.693320 0.663364 0.732753 0.683587

30 0.752188 0.750911 0.723198 0.684439 0.762786 0.665571 0.734710 0.737100 0.763470 0.728295 0.706282 0.631261 0.740089 0.762255

35 0.745577 0.749426 0.723547 0.748018 0.747697 0.754066 0.744706 0.751044 0.750449 0.716858 0.743508 0.734228 0.722989 0.752929

40 0.748392 0.740866 0.763235 0.727755 0.711229 0.797605 0.737629 0.742906 0.748802 0.746581 0.745776 0.734341 0.743508 0.734228

45 0.746051 0.756719 0.733189 0.743517 0.744420 0.754432 0.733503 0.701899 0.742860 0.723298 0.742905 0.733577 0.745776 0.734341

5 0.714377 0.764630 0.322465 0.656544 0.686448 0.766538 0.755823 0.322399 0.777896 0.761514 0.321395 0.602617 0.706282 0.631261

10 0.665571 0.684873 0.708437 0.744368 0.623470 0.746775 0.764020 0.748171 0.700626 0.678108 0.622531 0.761030 0.717546 0.718109

15 0.754066 0.722867 0.772105 0.717105 0.746852 0.748157 0.718119 0.754012 0.736921 0.654111 0.737629 0.742906 0.699004 0.694056

20 0.797605 0.732615 0.755648 0.712967 0.739903 0.737100 0.764940 0.763534 0.750911 0.707293 0.733503 0.701899 0.716917 0.618915

3() 25 0.774338 0.750449 0.716858 0.743508 0.734228 0.751044 0.753882 0.761677 0.749426 0.761779 0.756135 0.736474 0.659350 0.695823
30 0.740789 0.748802 0.746581 0.745776 0.734341 0.702240 0.743848 0.767212 0.761985 0.757960 0.712695 0.703071 0.693320 0.671680

35 0.745847 0.742860 0.723298 0.742905 0.733577 0.762423 0.749466 0.761985 0.775970 0.722989 0.750449 0.716858 0.743508 0.734228

40 0.748566 0.715951 0.756389 0.719955 0.755463 0.740089 0.762255 0.775970 0.764418 0.743508 0.748802 0.746581 0.745776 0.734341

45 0.749734  0.744072 0.761794 0.753657 0.753158 0.722989 0.752929 0.764418 0.763470 0.745776 0.742860 0.723298 0.742905 0.733577

5 0.747326  0.762858 0.313086 0.640688 0.400351 0.718119 0.754012 0.710415 0.740089 0.762255 0.761514 0.322814 0.602617 0.774338

10 0.763522  0.652732 0.702240 0.743848 0.718530 0.764940 0.763534 0.744373 0.722989 0.752929 0.678108 0.622531 0.761030 0.740789

35 15 0.767212  0.766538 0.762423 0.749466 0.761056 0.742860 0.723298 0.671680 0.714377 0.766538 0.628105 0.777896 0.761985 0.745847
20 0.761985 0.746775 0.753927 0.760929 0.752819 0.715951 0.756389 0.675647 0.665571 0.746775 0.693679 0.700626 0.775970 0.742860

25 0.775970 0.748157 0.749942 0.661494 0.763653 0.744072 0.761794 0.687683 0.754066 0.748157 0.654111 0.736921 0.764418 0.757960
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 0.764418 0.737100 0.740089 0.762255 0.731137 0.764020 0.761514 0.777775 0.797605 0.737100 0.707293 0.750911 0.763470 0.720756
35 0.763470 0.751044 0.722989 0.752929 0.735963 0.734228 0.678108 0.737629 0.742906 0.751044 0.712484 0.749426 0.734250 0.720756
40 0.751307 0.756845 0.735732 0.744692 0.742435 0.734341 0.654111 0.733503 0.701899 0.728295 0.706282 0.631261 0.755823 0.322399
45 0.757414  0.764305 0.762182 0.760949 0.705330 0.733577 0.757960 0.712695 0.703071 0.753300 0.717546 0.718109 0.764020 0.748171
5 0.755823 0.322399 0.768660 0.722412 0.325747 0.742860 0.737100 0.766538 0.740089 0.762255 0.731137 0.764020 0.753882 0.761677
10 0.764020 0.748171 0.735793 0.718648 0.618797 0.757960 0.761985 0.746775 0.728295 0.706282 0.631261 0.711327 0.756211 0.734856
15 0.759987 0.718119 0.754012 0.710415 0.706994 0.720756 0.775970 0.748157 0.753300 0.717546 0.718109 0.687405 0.750914 0.741141
20 0.774954 0.764940 0.763534 0.744373 0.746163 0.720756 0.764418 0.737100 0.671680 0.714377 0.755823 0.322399 0.757787 0.764019
40 25 0.742716  0.753882 0.761677 0.739303 0.595732 0.755823 0.763470 0.751044 0.675647 0.665571 0.764020 0.748171 0.693679 0.777896
30 0.756474 0.756211 0.734856 0.702923 0.764447 0.764020 0.737629 0.742906 0.687683 0.754066 0.740089 0.762255 0.654111 0.700626
35 0.747396 0.750914 0.741141 0.758201 0.763139 0.700626 0.764274 0.701899 0.777775 0.797605 0.722989 0.752929 0.707293 0.736921
40 0.759631 0.757787 0.764019 0.736438 0.744943  0.736921 0.754135 0.761514 0.322814 0.602617 0.761779 0.756135 0.736474 0.750911
45 0.750198 0.760208 0.762853 0.738613 0.754243 0.750911 0.723198 0.678108 0.622531 0.761030 0.757960 0.712695 0.703071 0.749426
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Appendix H
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset I1 - RMSE

Testing value

Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 0.288038 0.288793 0.289039 (0.286974 0.322232 (.289096 0.286921 (288998 0.322814 (289017 0.289367 0.288926 0.289542 (0.297504
10 0.288494 0.288579 0.288725 (.288264 0.285723 (293982 0.287903 0.289174 0.288744 (.289134 0.286092 0.289007 0.288979 (.288791
15 0.288985 0.288494 0.288753 (.286024 0.296632 (288908 0.288677 0.289160 0.288815 0.288307 (.289023 0.288842 0.288307 (.289023
20 0.288985 0.288739 0.288625 (.289257 0.286198 0.288846 0.288914 0.288787 0.288917 0.289263 (289183 0.300569 0.289263 (.289183
5 25 0.288749 0.288783 0.288991 (.289258 0.285562 0.289023 0.288846 0.288793 0.288909 0.289005 (.289339 0.288838 0.289127 (.286894
30 0.289050 0.288994 0.289006 (0.287200 0.289983 0.289309 0.289023 0.322547 (.289256 0.288817 (0.261945 0.932413 0.289086 (.289103
35 0.288467 (0.288707 0.289069 (0.286068 0.289455 0.288754 0.289309 (285417 0.289348 (.289256 0.288817 (.287454 0.288913 (.289121
40 0.288680 0.288784 0.288667 (288861 0.289313 0.288842 0.288754 (.289017 0.289367 0.288756 0.288778 0.288823 (.289096 0.286921
45 0.289083 (.288954 0.288858 (0.287798 0.287951 0.288839 0.289275 (.293230 0.300569 0.289263 (289183 0.288784 (.293982 0.287903
5 0.322953  (.288882 0.288758 0.307061 (.303513 0.322547 (0.289256 0.288817 (0.262842 0.289005 (.289339 0.288838 (.322181 0.769422
10 0.288095 0.288430 0.288914 (288615 0.289237 (.288998 0.322814 0.288926 0.289542 (297504 0.288919 (285417 0.289348 0.288914
10 15 0.288932 0.288785 0.288846 (.298275 0.285338 0.289174 0.288744 0.289007 0.288979 (288791 0.288556 (.289017 0.289367 0.288846
20 0.289161 0.288668 0.289023 (0286791 0.288049 0.289160 0.288815 0.288739 0.288625 (.289257 0.289033 (.289134 0.286092 0.289023
25 0.289029 0.288835 0.289309 (.287963 0.284167 0.288787 0.288917 0.288783 0.288991 (.289258 0.289067 0.288307 (.289023 0.289309
30 0.288886 0.288852 0.288754 (289870 0.289143 0.288793 0.288909 (289096 0.286921 (288710 0.288940 0.289263 (289183 0.288754
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 0.288745 (289282 0.288842 (287698 0.287661 0.288787 (0.289096 0.293982 0.287903 (288778 0.288840 0.289127 (.286894 0.288842
40 0.288787 (0.289018 0.288835 (.289034 0.286267 0.288793 (.293982 0.288908 0.288677 0.289214 0.288800 0.289086 (289103 0.288459
45 0.288779 (0.288715 0.288726 (.289086 0.289008 0.288838 (.288839 0.289275 (.293230 0.300569 0.289263 (.289183 0.289121 0.287451
5 0.322547 0289256 0.288817 0.262842 0.286629 0.288739 0.288625 (.289257 0.289005 (0.289339 0.288838 (0.322181 0.289143 0.288793
10 0.288754 0.288756 0.288778 (0.300857 0.288514 0.288783 0.288991 (289258 0.322547 (289256 0.288817 (0.313052 0.287661 0.288787
15 0.287707 0.288923 0.288823 (285762 0.286841 0.289160 (288998 0.322814 0.288914 (289096 0.286921 0.288926 0.289542 (.297504
20 0.288710 0.288940 0.288823 (.289096 0.286921 0.288787 0.289174 0.288744 0.288846 (293982 0.287903 0.289007 0.288979 (.288791
15 25 0.288778 0.288840 0.288784 (.293982 0.287903 0.288793 0.289160 0.288815 0.289023 (288908 0.288677 0.288745 (.289282 0.288842
30 0.289214 0.288800 0.288852 (.288908 0.288677 0.289012 0.288787 0.288917 0.289309 (285417 0.289348 0.288787 (.289018 0.288835
35 0.288903 (.288793 0.288895 (288963 0.289418 0.288839 0.288793 0.288909 0.288754 (289017 0.289367 0.289062 0.289033 (.288864
40 0.288808 (0.288841 0.288860 (0.288737 0.287293 0.288919 0.289040 (.296315 0.288842 (289134 0.286092 0.289062 0.289067 0.289007
45 0.288882 (.288831 0.289539 (289463 0.289112 (288839 0.289275 (.293230 0.300569 0.289263 (289183 0.288864 0.288764 (.288883
5 0.288771 (.288998 0.322814 (305463 0.302876 0.289174 0.288739 0.288625 (.289257 0.288998 0.322814 0.288733 0.288733 (.289048
10 0.290313 0.289174 0.288744 (0.289037 0.289357 0.289160 0.288783 0.288991 (.289258 0.289174 0.288744 0.288864 0.288864 (0.288213
15 0.289137 0.289160 0.288815 (.288780 0.289747 0.288787 0.288914 (289096 0.286921 0.289160 0.288815 0.289007 0.289007 (.288692
20 0.289005 0.288787 0.288917 (.287300 0.285010 0.288793 0.288846 (.293982 0.287903 0.288787 0.288917 0.288883 0.289012 0.288835
20 25 0.289268 0.288793 0.288909 (.285417 0.289348 0.289012 0.289023 (288908 0.288677 0.288793 0.288909 0.288952 (.288839 0.288954
30 0.288989 0.289012 0.288835 (.289017 0.289367 0.288840 0.289309 0.289005 (.289339 0.288838 (.322181 0.288942 (288931 0.288873
35 0.288922 (288839 0.288954 (289134 0.286092 0.288800 (288754 0.288926 0.289542 (297504 0.286841 0.289160 (288998 0.322814
40 0.288866 (.288862 0.288903 (0.285602 0.289114 0.288793 0.288842 0.289007 0.288979 (.288791 0.286921 0.288787 0.289174 0.288744
45 0.289045 (.288865 0.289257 (0.289298 0.289416 0.288841 0.322547 0.289256 0.288817 (.254032 0.287903 0.288793 0.289160 0.288815
25 5 0.289005 (0.289339 0.288838 (.322181 0.293043 ¢.284321 0.286921 0.289747 (.288839 0.289275 (293230 0.300569 0.289263 (.289183

154




Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 0.288917 0.288919 0.289040 (296315 0.286331 (293982 0.287903 0.285010 0.289217 0.289132 0.288890 (292332 0.288688 0.288619
15 0.288832 0.288556 0.288733 (.289048 0.288134 (.288908 0.288677 0.289348 0.288914 0.288979 (.288791 0.288886 0.288750 0.288307
20 0.289062 0.289033 0.288864 (.288213 0.290233 (289137 0.288739 0.288625 0.288846 0.289208 (.288925 0.289566 0.288827 0.289263
25 0.289062 0.289067 0.289007 (0.288692 0.289305 (.289005 0.288783 0.288991 0.289023 (285417 0.289348 0.288417 0.289156 (.290398
30 0.288864 0.288764 0.288883 (.287496¢ 0.289047 0.289268 (.288998 0.322814 0.289309 (289017 0.289367 0.289132 0.288890 (.292332
35 0.289108 (288983 0.288952 (.290264 0.288984 0.289007 0.289174 0.288744 0.288754 (289134 0.286092 0.289217 0.289132 0.288890
40 0.288942 (288931 0.288873 (.289145 0.289007 0.289012 0.289160 0.288815 0.288842 (287321 0.289566 0.288587 0.288926 0.289542
45 0.289003 (.288904 0.289505 (0.289204 0.289032 (288839 0.288787 0.288917 0.254210 0.288979 (.322547 0.289256 0.288817 (.262842
5 0.288841 (288875 0.322465 (.285970 0.287657 (0.289096 0.288793 0.288909 (288435 0285417 0.289348 (293982 0.287903 0.288787
10 0.289001 0.288417 0.289156 (290398 0.301502 (288839 0.289275 (.293230 0.300569 0.289263 (289183 0.288908 0.288677 0.288793
15 0.289217 0.289132 0.288890 (.292332 0.289927 0.288432 0.285432 0.288925 0.294313 (289134 0.286092 0.288846 (.288978 0.289377
20 0.288587 0.288926 0.289542 (297504 0.288749 (288998 0.322814 0.288867 0.288739 0.288625 (289257 0.289023 (.289096 0.286921
30 25 0.288758 0.289007 0.288979 (.288791 0.288886 0.289174 0.288744 0.288937 0.288783 0.288991 (.289258 0.289309 (293982 0.287903
30 0.289094 0.289063 0.289208 (.288925 0.289566 0.289160 0.288815 0.288983 0.312696 0.288965 0.288911 0.288754 (.288908 0.288677
35 0.288926 (0.289019 0.289118 (289161 0.289342 0.288787 0.288917 0.288993 (.322547 0.289256 0.288817 (.253433 0.288543 0.211321
40 0.288976 (0.288978 0.289377 (0.288566 0.289167 0.288793 0.288909 0.289681 (.322399 0.288916 0.288841 (288875 0.288815 0.289023
45 0.289017 0.289067 0.288980 (0.289019 0.289129 0.289005 (289339 0.288838 (.322181 0.282134 0.289001 0.288417 0.288917 0.289309
5 0.288931 0.289037 0.322881 0.301530 0.315615 0.288926 0.289542 (0.297504 0.288839 0.289275 0.289217 0.289132 0.289263 (.289183
10 0.288973 0.288688 0.288619 (289191 0.294883 0.289007 0.288979 (.288791 0.322547 0.289256 0.288817 (.244938 0.287542 0.300451
35 15 0.288684 0.288750 0.288307 (.289023 0.289332 0.288917 0.289309 (.285417 0.289348 0.289005 (.289339 0.288838 (.322181 0.265425
20 0.288925 0.288827 0.289263 (289183 0.289292 0.288909 0.288754 (.289017 0.289367 0.289023 0.288625 (.289257 0.288998 0.322814
25 0.288867 0.288931 0.289127 (0.286894 0.288954 (0.296315 0.288842 (289134 0.286092 0.289309 0.288991 (289258 0.289174 0.288744
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 0.288937 0.288976 0.289086 (.289103 0.289138 (293230 0.300569 0.289275 (.293230 0.288754 (0.289096 0.286921 0.289160 0.288815
35 0.288983 0.289079 0.288913 (0.289121 0.288863 0.289161 0.289342 0.289087 (.293102 0.288842 (293982 0.287903 0.288787 0.288917
40 0.288993  0.289030 0.289541 0289075 0.289710 0.288566 0.289167 0.289002 (289414 0.288760 0.288908 0.288677 0.288793  0.288909
45 0.288948 (0.288942 0.288927 (.288858 0.286761 0.289019 0.289129 0.289008 (.289653 0.289096 0.286921 0.289160 0.288815 0.289007
5 0.289681 (0.322399 0.288916 (0.291887 0.319410 0.288307 0.289023 0.289309 (.285417 0.289348 (288998 0.322814 (.289256 0.288817
10 0.288977 0.288839 0.289275 (.293230 0.300569 0.289263 (.289183 0.288754 (0.289017 0.289367 0.289174 0.288744 0.288756 0.288778
15 0.289015 (0.289070 0.289087 (0.293102 0.287672 0.289127 (.286894 0.289377 (0.288566 0289167 0.289160 0.288815 0.288914 0.289309
20 0.288887 (.288948 0.289002 (.289414 0.289196 0.289086 (.289103 0.289005 (.289339 0.288838 (.322181 0.288917 0.288846 0.288754
40 25 0.288950 (.288913 0.289008 (.289653 0.274904 0.288307 (.289023 0.322547 0.289256 (289096 0.288793 0.288909 0.289023 (.262842
30 0.289062 0.289036 0.289258 (.289740 0.289001 0.289263 (289183 0.285417 0.289348 (293982 0.287903 0.288625 0.289309 ().288875
35 0.289059 0.289090 0.289000 (0.289363 0.289178 0.289127 (.286894 0.289017 0.289367 (0.288908 0.288677 0.288991 0.288754 0.276743
40 0.289003 (0.289066 0.288978 (.288977 0.289136 0.289086 (289103 0.289134 0.286092 0.288926 0.289542 (297504 0.288842 0.288975
45 0.289047 (.288911 0.289051 (.289224 0.289064 0.288913 (0.289121 0.288946 0.279654 0.289007 0.288979 (.288791 0.265741 0.294607
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Appendix I
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - GRMSE

Training value

Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 1.277809 1.278781 1.279100 1276531 1.341334 1278921 1.279183 1.278509 1278803 1.274975 1.276296 1290338 1.277295 1.277873
10 1.278392 1.278515 1.278691 1278122 1.274851 1.278981 1.278916 1.278111 1.277456 1.279165 1.276380 1275511 1.279253 1.277824
15 1.279033 1.278395 1.278728 1275243 1.290338 1.278995 1.279020 1.279347 1.278756 1.285775 1.277639 1274671 1261456 1.272884
20 1.278603 1.278711 1.278568 1279411 1.275511 1.278727 1.279093 1.279168 1.279432 1.275573 1.277824 1.280365 1.278997 1.279232
5 25 1.278724 1.278769 1.279037 1279430 1274671 1.278931 1.279036 1279108 1.278892 1.279162 1.272884 1.279661 1.279227 1.277377
30 1.279115 1.279042 1.279057 1.276751 1.280365 1.277873 1.278302 1278931 1.302920 1.298616 1.279232 1.279460 HiHHE  1.275554
35 1.278359 1.278668 1.279148 1275341 1.279661 1.278955 1.278763 1278842 1.279076 1279532 1.277377 1.278911 1.278913 1.279072
40 1.278634 1.278769 1.278618 1278878 1.279460 1.277824 1.290338 1278503 1.278743 1280012 1.275554 1.278801 1.278443 1.278672
45 1.279170 1278989 1.278865 1.277512 1.277709 1.272884 1.275511 1274523 1.278120 1278815 1.279742 1.279643 1.273453 1.277543
5 1.207665 1278888 1.278727 1307155 1303475 1.278815 1.279742 1279643 1.276456 1279183 1.278509 1.278727 1277824 1.290338
10 1.277873 1.278302 1.278931 1.278557 1.279360 1290338 1.279115 1.279042 1.279057 1.278916 1.278111 1.278931 1.272884 1.275511
10 15 1.278955 1.278763 1.278842 1292172 1.274445 1275511 1.278359 1.278668 1.279148 1.279020 1.279347 1.277873 1.278302 1.278931
20 1.279258 1.278612 1.279072 1276234 1.277824 1274671 1.207665 1.278888 1.278727 1.279093 1.279168 1.278955 1.278763 1.278842
25 1.279080 1.278827 1.279445 1277714 1.272884 1.280365 1.277873 1.278302 1.278931 1.279036 1.279108 1.278892 1.279162 1.277295
30 1.278893 1.278852 1.278725 1280186 1.279232 1.279661 1.302920 1.298616 1.302920 1.298616 1.278911 1.278913 1279072 1.279253
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Input | Hidden Outliers

Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 1.278710 1279413 1.278837 1277419 1.277377 1279460 1.279076 1279532 1.279076 1.279532 1277113 1279079 1278672 1.261456
40 1.278764 1279066 1.278828 1.279090 1.275554 1278435 1278743 1280012 1.278743 1.280012 1.280673 1279001 1.294532 1.278997
45 1.278754 1278671 1.278686 1279159 1.279061 1278634 1.278769 1278618 1.278878 1.279460 1.279209 1279032 1.275630 1.279227
5 1.222416 1279373 1.278796 1.248533 1.276019 1.302920 1.298616 1.302920 1.298616 1.278911 1.278913 1.279072 1277113 1.279079
10 1.278715 1.278717 1.278752 1296143 1.278403 1.279076 1.279532 1279076 1.279532 1.278801 1.278443 1.278672 1.280673 1.279001
15 1.278735 1.278934 1.278803 1274975 1.276296 1.278743 1.280012 1.278743 1.280012 1.278945 1.278727 1.277295 1.279209 1.279032
20 1.278658 1.278957 1.277456 1279165 1.276380 1.277824 1.290338 1.279108 1.278892 1.279162 1.278931 1.279253 1278509 1.279183

15 25 1.278745 1.278825 1.278756 1285775 1.277639 1.272884 1.275511 1.279115 1.279042 1.279057 1.277377 1261456 1278111 1.278916
30 1.279316 1.278774 1.278842 1278917 1.278615 1279232 1.274671 1.278359 1.278668 1.279148 1.275554 1278997 1.279347 1.279020
35 1.278908 1.278765 1.278898 1278986 1.279604 1.277377 1.280365 1.235035 1.278888 1.278727 1279061 1.279227 1.279168 1.279093
40 1.278785 1.278826 1.278851 1.278693 1.276861 1.275554 1279661 1.277873 1278302 1.278931 1276019 1.277824 1290338 1.279036
45 1.278881 1278815 1.279742 1279643 1.279196 1.278509 1279460 1242945 1276053 1.277824 1290338 1.272884 1275511 1.285353
5 1.277356 1279024 1.342153 1302920 1.298616 1.278111 1277873 1.278302 1.278931 1272884 1.275511 1278815 1.279742 1.279643
10 1.280909 1.279264 1.278696 1279076 1.279532 1.279347 1.278955 1.278763 1.278842 1.290338 1.235336 1278888 1.278727 1.277295
15 1.279228 1.279238 1.278786 1.278743 1.280012 1.279168 1.279108 1.278892 1.279162 1.275511 1.277873 1278302 1.278931 1.279253
20 1.279032 1.278751 1.278919 1276851 1.273951 1.279183 1.279115 1.279042 1.279057 1.274671 1.277824 1277113 1.279079 1.030024

20 25 1.279380 1.278757 1.278908 1274472 1.279490 1.278916 1.278359 1.278668 1.279148 1.280365 1.272884 1280673 1.279001 1.278997
30 1.279011 1.279044 1.278811 1279048 1.279520 1.279020 1.278911 1.278913 1.279072 1.279661 1.279232 1.279209 1.279032 1.279227
35 1.278925 1278817 1.278942 1279214 1.275359 1.279093 1278801 1.278443 1.278672 1.279460 1.277377 1278921 1.278443 1.278672
40 1.278852 1278847 1.278901 1274682 1.279181 1.279036 1278420 1.278727 1.302920 1.298616 1.275554 1278981 1.279063 1.278842
45 1.279085 1278850 1.279365 1279421 1.279579 1278696 1279076 1.278931 1.279076 1279532 1.277542 1278995 1.279127 1.279026

25 5 1.279026 1279468 1.278816 1341187 1.284736 1.278727 1.276035 1274630 1278743 1.280012 1.290338 1277873 1.278302 1.278931

158




Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 1.278911 1.278913 1.279072 1289262 1.275608 1.278931 1.278560 1.277295 1279183 1.272884 1.275511 1.278955 1278763 1.278842
15 1.278801 1.278443 1.278672 1279084 1.277916 1277824 1.290338 1.279253 1278916 1.279232 1.274671 1.209454 1.278888 1.278727
20 1.279101 1.279063 1.278842 1278009 1.280648 1272884 1.275511 1.261456 1.279020 1.277377 1.280365 1277873 1.278302 1.278931
25 1.279101 1.279127 1.279026 1278623 1.279425 1.279300 1.279183 1.278997 1.279093 1.275554 1279661 1.279108 1.278892 1.279162
30 1.278842 1.278712 1.278867 1277113 1.279079 1.278478 1.278916 1.279227 1279036 1.277650 1.279460 1.278509 1.276563 1.277863
35 1.279160 1278996 1.278957 1280673 1.279001 1.278695 1.279020 1.278815 1.279742 1.279643 1.278921 1.278111 1.302920 1.298616
40 1.278943 1278929 1.278853 1279209 1.279032 1.279135 1.279093 1.236435 1.278888 1.278727 1.278981 1.279347 1.279076 1.279532
45 1.279023 1278894 1.279684 1279288 1.279068 1.278914 1279036 1.277873 1278302 1.278931 1278995 1.279168 1278743 1.280012
5 1.278804 1278848 1.341594 1275145 1.277409 1.278980 1278983 1.274635 1277824 1.277873 1278302 1.278931 1.279101 1.279063
10 1.279016 1.278256 1.279215 1280867 1.297128 1.278911 1.278913 1.279072 1.272884 1.278955 1278763 1.278842 1.279101 1.279127
15 1.279300 1.279183 1.278868 1.283547 1.280236 1.278801 1.278443 1.278672 1.279232 1.278931 1.278560 1.277295 1279183 1.272884
20 1.278478 1.278916 1.279721 1290539 1.278691 1.279115 1.279042 1.279057 1.277377 1.279108 1278892 1.279162 1.278602 1.278509
30 25 1.278695 1.279020 1.278984 1278743 1.278873 1.278359 1.278668 1.279148 1.275554 1.277295 1.302920 1.298616 1.278679 1.278111
30 1.279135 1.279093 1.279289 1278916 1.279754 1.253568 1.278888 1.278727 1.278509 1.279253 1.279076 1.279532 1.278778 1.279347
35 1.278914 1279036 1.279167 1279226 1.279467 1277873 1.278302 1.278931 1278111 1.261456 1278743 1.280012 1286567 1.278921
40 1.278980 1.278983 1.279504 1278451 1.279229 1.278815 1.279742 1.279643 1279347 1.278997 1278727 1.277824 1290338 1.278981
45 1.279033 1279099 1.278986 1279036 1.279183 1.279742 1.279643 1.278921 1279168 1.279227 1278931 1.272884 1.275511 1.278995
5 1.278914 1279051 1.342198 1296892 1.323468 1.277853 1.278911 1.278913 1279072 1.279115 1279042 1.279057 1279183 1.277824
10 1.278968 1.278602 1.278509 1279254 1.286953 1276463 1.278801 1.278443 1.278672 1.278359 1.278668 1.279148 1278916 1.272884
35 15 1.278593 1.278679 1.278111 1279034 1.279435 1279108 1.278892 1.279162 1.278815 1.279742 1.279643 1.290338 1.279020 1.279232
20 1.278906 1.278778 1.279347 1279243 1.279386 1277295 1.204543 1.278888 1.278727 1.302920 1.298616 1.275511 1.279093 1.277377
25 1.278831 1.278914 1.279168 1276356 1.278944 1279253 1.277873 1.278302 1.278931 1279076 1.279532 1274671 1279036 1.275554
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Input | Hidden Outliers
Lags | Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 1.278921 1.278972 1.279116 1279137 1.279186 1261456 1.277353 1.298616 1.275511 1278743 1.280012 1280365 1.278509 1.278727
35 1.278981 1.279108 1.278892 1279162 1.278828 1.278997 1.279721 1.277873 1.278302 1278931 1.278921 1279661 1.278111 1.278931
40 1.278995 1279043 1.279714 1279104 1.279934 1.279227 1.278984 1.278955 1278763 1.278842 1.278981 1279460 1.279347 1.263533
45 1.278936 1278927 1.278908 1.278818 1.276134 1.278589 1.279289 1.277824 1290338 1277758 1.278995 1286453 1.279168 1.274565
5 1.279888 1341460 1.278887 1282920 1.334625 1.277824 1274644 1272884 1275511 1.278911 1278913 1.279072 1.275035 1.273053
10 1.278965 1278785 1279356 1284714 1.295953 1.272884 1.277824 1.290338 1.275533 1.278801 1.278443 1.278672 1.277645 1.274400
15 1.279015 1279086 1.279109 1284559 1.277295 1.279232 1.272884 1.275511 1.279108 1.278892 1.279162 1.279115 1.279042 1.279057
20 1.278849 1278927 1.278998 1.279543 1.279253 1.277377 1.278302 1.279183 1279086 1.211343 1.278888 1.278727 1.290338 1.279148
40 25 1.278930 1.278884 1.279006 1279849 1.261456 1.275554 1278763 1278916 1278927 1.277873 1.278302 1.278931 1.275511 1.277295
30 1.279077 1.279042 1.279334 1279965 1.278997 1.278509 1.278727 1.279020 1278884 1.278815 1.279742 1.279643 1274671 1.279253
35 1.279074 1279112 1.278997 1279469 1.279227 1278111 1278931 1.279093 1279042 1.278921 1302920 1.298616 1.280365 1.261456
40 1.278999 1.279081 1.278967 1278972 1.279174 1279347 1.277873 1278302 1.278931 1.278981 1279076 1.279532 1.279661 1.278997
45 1.279057 1.278880 1.279062 1279290 1.279087 1279168 1.278955 1278763 1.278842 1.278995 1278743 1.280012 1279460 1.279227
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Appendix J
Performance of the Enhanced Backpropagation Neural Network (BPNN) Model on Simulated Dataset II - GRMSE

Testing value

Input | Hidden Outliers
Lag Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
5 1.753120 1.751782 1.578203 1.512070 1.222156 1.744544 1.590608 1.618171 1754512 1.750648 1.750782 1.690646 1.708648 1.583944
10 1.739693 1.585780 1.754303 1.692375 1.585417 1.613666 1.650819 1.587109 1.722891 1.697171 1.705152 1734404 1.732219 1.661379
15 1.653088 1.648694 1.641296 1582979 1.566051 1.676204 1.719556 1.704096 1.701879 1.624520 1.715581 1723140 1.729678 1.748532
20 1.342395 1.676456 1.537831 1.649273 1531838 1.724773 1.723400 1.704347 1.548775 1.696412 1.754910 1.715466 1.706092 1.714876
5 25 1.657602 1.591055 1.643938 1.617569 1.559640 1.725103 1.713860 1.751833 1.640667 1.602836 1.714876 1.709911 1.741020 1.750837
30 1.713571 1.640111 1.596789 1.579421 1.604079 1.727451 1.685937 1.735592 1.583944 1.730716 1.750837 1.703059 1.709771 1.713571
35 1.621557 1.694729 1.659768 1.550937 1.595059 1.708900 1.703059 1.708900 1.678171 1737439 1.690646 1.708648 1.709911 1.621557
40 1.655911 1.736459 1.677415 1678133 1.706655 1.732364 1.306365 1.749885 1.756540 1754053 1.720954 1.732522 1.703059 1.655911
45 1.604291 1.698389 1.632100 1.612234 1.682927 1.742399 1.548775 1.652582 1.653386 1.720111 1.678329 1.723380 1.703652 1.708590
5 1.342395 1749885 1.754315 1.381371 1383413 1.650819 1.653386 1.720111 1.678329 1583944 1.706092 1.676204 1.719556 1.704096
10 1.548775 1.652582 1.748953 1.659441 1.736902 1.754512 1.585780 1.754303 1.692375 1.661379 1.741020 1.724773 1.723400 1.704347
10 15 1.640667 1.660310 1.667643 1588746 1.545685 1.722891 1.648694 1.641296 1.582979 1.748532 1.709771 1.725103 1.713860 1.751833
20 1.341769 1.565522 1.744544 1.590608 1.618171 1.754512 1.750648 1.617569 1.559640 1.714876 1.709911 1.727451 1.685937 1.735592
25 1.661379 1.711054 1.613666 1650819 1.587109 1.722891 1.697171 1.579421 1.604079 1.750837 1.703059 1.708900 1.755772 1.719740
30 1.748532 1.640789 1.703820 1.696412 1.724156 1.750782 1.624520 1.324194 1.595059 1.690646 1.708648 1.732364 1.679910 1.728447
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Input | Hidden Outliers
Lag Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
35 1.714876  1.689388 1.690105 1.602836 1.592220 1.705152 1.639393 1678133 1.706655 1.734404 1732219 1.742399 1.730358 1.716971
40 1.750837 1.708716 1.682094 1730716 1.614880 1715581 1.744544 1590608 1.618171 1.723140 1.729678 1.678171 1.737439 1.665384
45 1.748008 1.724284 1.723380 1.703652 1.708590 1754910 1.613666 1.650819 1.587109 1.652035 1.645939 1.756540 1.754053 1.720954
5 1.354290 1.740027 1.730774 1220721 1.612468 1.583944 1.713860 1751833 1.585780 1.754303 1.692375 1.653386 1.720111 1.678329
10 1.645503 1.682967 1.696802 1553488 1.766886 1.661379 1.685937 1.735592 1.648694 1.641296 1.582979 1.698856 1.725103 1.750782
15 1.667158 1.751042 1.682500 1483061 1.607155 1.748532 1719078 1.744544 1.590608 1.618171 1.617569 1.559640 1.727451 1.705152
20 1.667158 1.796540 1.706092 1669819 1.613037 1.714876 1.728743 1.613666 1.650819 1.587109 1.579421 1.604079 1.708900 1.715581
15 25 1.755772 1.719740 1.706092 1.657660 1.630945 1.750837 1.690646 1.708648 1.754512 1.750648 1.542137 1595059 1.732364 1.754910
30 1.679910 1.728447 1.741020 1710802 1.779804 1.754512 1.734404 1.732219 1.722891 1.697171 1.678133 1706655 1.742399 1.754512
35 1.730358 1.716971 1.709771 1751113 1.686343 1.722891 1.723140 1.729678 1.701879 1.624520 1.676204 1.719556 1.704096 1.722891
40 1.738050 1.753004 1.709911 1718676 1.615773 1.750782 1.678171 1.737439 1.665384 1.682500 1724773 1.723400 1.704347 1.701879
45 1.683869 1.732050 1.703059 1.652916 1.685706 1705152 1.756540 1.754053 1.720954 1.706092 1747279 1.709616 1.689858 1.706092
5 1.739496  1.750643 1.222641 1513269 1.531187 1.690646 1708648 1.653386 1.720111 1678329 1.583944 1713860 1.751833 1.741020
10 1.642547 1.617470 1.542056 1.749791 1.622847 1.734404 1.732219 1.727451 1.617569 1.559640 1.661379 1.685937 1.735592 1.709771
15 1.719078 1.667584 1.755888 1.724874 1.731458 1.723140 1.729678 1.708900 1.579421 1.604079 1.748532 1.725195 1.741020 1.725103
20 1.728743 1.631100 1.651640 1.641700 1.587105 1.585780 1.754303 1.692375 1.550937 1.595059 1.714876 1.713525 1.709771 1.727451
20 25 1.697833 1.715068 1.732685 1.577792 1.732614 1.706092 1.641296 1.582979 1.678133 1.706655 1.750837 1.704096 1.709911 1.708900
30 1.685206 1.711747 1.754512 1750648 1.677941 1.741020 1.750782 1.714876 1.744544 1.590608 1.618171 1.704347 1.703059 1.732364
35 1.705060 1.724535 1.722891 1697171 1.537066 1.709771 1705152 1.750837 1.676204 1.719556 1.704096 1.702462 1719639 1.742399
40 1.721698 1.737311 1.701879 1.624520 1.689407 1.709911 1715581 1.754512 1.724773 1.723400 1.704347 1.678171 1.737439 1.665384
45 1.739538 1.747279 1.709616 1689858 1.690614 1.703059 1754910 1.722891 1.701536 1.740324 1669540 1.756540 1.754053 1.720954
25 5 1.751072  1.741203 1.707887 1.222083 1.609097 1.711747 1.754512 1.585780 1.754303 1.692375 1.754512 1750648 1.583944 1.706092

162




Input | Hidden Outliers
Lag Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
10 1.744388 1.669676 1.654721 1.614027 1.653145 1724535 1.722891 1.648694 1641296 1.582979 1.722891 1.697171 1.661379 1.741020
15 1.690828 1.779961 1.757605 1.714700 1.817523 1737311 1.701879 1.706092 1725103 1.744544 1.701879 1.624520 1.748532 1.709771
20 1.690646 1.651355 1.755472 1777042 1.720710 1.617569 1.559640 1.741020 1.727451 1.613666 1.650819 1.587109 1.714876 1.728743
25 1.690646 1.708648 1.737758 1.735634 1.699588 1.579421 1.604079 1.709771 1.708900 1.732219 1.648694 1.750782 1.750837 1.697833
30 1.734404 1.732219 1.686271 1.625939 1.752844 1.550937 1.595059 1.709911 1732364 1.729678 1.744544 1.705152 1.740009 1.715581
35 1.723140 1729678 1.686892 1727232 1.726699 1.678133 1.706655 1.703059 1.678171 1.737439 1.665384 1.715581 1.736015 1.754910
40 1.727917 1715231 1.753639 1.693570 1.667230 1.676204 1.719556 1.704096 1.756540 1.754053 1.720954 1.754910 1.751833 1.742399
45 1.723950 1742231 1.702462 1719639 1.721137 1.724773 1.723400 1.704347 1653386 1.720111 1.678329 1.685937 1.735592 1.750782
5 1.672257 1.756066 1.222323 1.585465 1.628772 1.725103 1.713860 1.751833 1.706092 1.585780 1.754303 1.692375 1.720972 1.583944
10 1.599652 1.627413 1.662973 1720972 1.539405 1.727451 1.685937 1.735592 1.741020 1.648694 1.641296 1.582979 1.676076 1.661379
15 1.737581 1.685719 1.769415 1.676076 1.725195 1.708900 1.737439 1.754911 1.709771 1.756540 1.754512 1.750648 1.617569 1.748532
20 1.816868 1.701536 1.740324 1.669540 1.713525 1.732364 1.754053 1.747834 1.709911 1737439 1.722891 1.697171 1.579421 1.714876
30 25 1.773451 1.731393 1.676204 1719556 1.704096 1.742399 1.750782 1.774484 1.703059 1.754053 1.701879 1.624520 1.550937 1.750837
30 1.715045 1.728581 1.724773 1.723400 1.704347 1.750782 1.705152 1.718225 1.729678 1.690646 1.708648 1.705334 1.678133 1.706655
35 1.723566 1.718532 1.686424 1718572 1.702996 1705152 1.715581 1.741699 1.559640 1.734404 1732219 1.744544 1590608 1.618171
40 1.728179 1.674703 1.741612 1.680900 1.740009 1.715581 1.678171 1.737439 1.665384 1.723140 1729678 1.613666 1650819 1.587109
45 1.730170  1.720567 1.751062 1736884 1.736015 1.754910 1.756540 1.754053 1720954 1.653386 1720111 1.678329 1.740009 1.715581
5 1.726022 1.752897 1.215094 1562557 1.292455 1.678171 1.737439 1.665384 1690646 1.708648 1.585780 1.754303 1692375 1.750782
10 1.754069 1.581568 1.653386 1.720111 1.678329 1.756540 1.754053 1.720954 1.734404 1.732219 1.648694 1.641296 1582979 1.705152
35 15 1.760610 1.759410 1.752134 1729691 1.749757 1.719556 1.583944 1.706092 1.723140 1.729678 1.744544 1.590608 1618171 1.715581
20 1.751360 1.725103 1.737323 1749504 1.735460 1.723400 1.661379 1.741020 1.617569 1.559640 1.613666 1.650819 1.587109 1.754910
25 1.776378 1.727451 1.730488 1.592419 1.754299 1718572 1.748532 1.709771 1.579421 1.604079 1.725103 1750782 1.754512 1.750648
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Input | Hidden Outliers
Lag Nodes 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65%
30 1.755652 1.708900 1.713860 1.751833 1.699001 1.728179 1.714876 1.709911 1.550937 1595059 1.727451 1.705152 1.722891 1.697171
35 1.753978 1.732364 1.685937 1.735592 1.706930 1.730170 1.750837 1.703059 1.678133 1.706655 1.708900 1715581 1.701879 1.624520
40 1.732822  1.742399 1.706590 1721531 1.717737 1.713860 1.751833 1.676204 1.719556 1.704096 1.732364 1754910 1.737439 1.665384
45 1.743368 1.755451 1.751705 1.749545 1.657548 1.685937 1.735592 1.724773 1.723400 1.704347 1.742399 1653386 1.720111 1.678329
5 1.740551 1222251 1.763151 1.684540 1.226402 1.706092 1725103 1.754299 1718572 1.754512 1750648 1.678133 1.706655 1.708900
10 1.754911 1727425 1.706672 1.678479 1.533223 1.741020 1.727451 1.699001 1.728179 1.722891 1.697171 1.585780 1.754303 1.692375
15 1.747834 1678171 1.737439 1.665384 1.660183 1.709771 1.708900 1.750782 1.583944 1.701879 1.624520 1.648694 1.641296 1.582979
20 1.774484 1756540 1.754053 1.720954 1.723989 1.709911 1.732364 1.705152 1.661379 1.700423 1.617569 1.559433 1.690646 1.708648
40 25 1.718225 1.737204 1.750782 1.712469 1.503197 1.703059 1.742399 1.715581 1.748532 1.590608 1.618171 1.604079 1.734404 1.732219
30 1.741699 1.741241 1.705152 1.654488 1.755666 1.754512 1.750648 1.754910 1.714876 1.650819 1.587109 1.595059 1.723140 1.729678
35 1.726120 1.732112 1.715581 1744698 1.753355 1722891 1.697171 1.744034 1750837 1.743453 1678133 1.706655 1721436 1.653556
40 1.747194 1743979 1.754910 1707656 1.721925 1701879 1.624520 1.729342 1.713860 1.751833 1.676204 1.719556 1704096 1.756754
45 1.730893  1.748204 1.752852 1711383 1.719571 1.677415 1.678133 1.706655 1.685937 1.735592 1.724773 1.723400 1.704347 1.704563
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Convergence Test with different number of lag and different number of epochs

Appendix K

Epoch Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 Lag 30 Lag 35 Lag 40
100 0.59314 0.54241 0.54264 0.51930 0.625566 0.53989 0.55713 0.53943
200 0.56208 0.56385 0.55921 0.54721 0.54185 0.55202 0.54060 0.54189
300 0.59944 0.58615 0.56382 0.54313 0.54722 0.54515 0.54901 0.56209
400 0.59704 0.55577 0.56948 0.56862 0.54103 0.55093 0.54917 0.54684
500 0.55671 0.56334 0.55434 0.54998 0.55125 0.562976 0.53673 0.53527
600 0.56356 0.56274 0.56303 0.54542 0.54814 0.57882 0.54887 0.55263
700 0.57670 0.56004 0.55848 0.55019 0.55155 0.55188 0.54556 0.54018
800 0.56386 0.57483 0.55718 0.54572 0.55074 0.54553 0.54248 0.55799
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900 0.57840 0.55622 0.55131 0.55513 0.54921 0.54924 0.54948 0.5608

1000 0.56041 0.56274 0.55245 0.54047 0.55475 0.55988 0.53903 0.55376
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