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Abstrak

Beras memainkan peranan penting dalam memastikan keselamatan makanan dan
kestabilan ekonomi di Malaysia. Walau bagaimanapun, ramalan hasil padi menghadapi
cabaran kerana data pertanian yang terhad dan tidak mencukupi. Walaupun penjanaan
data sintetik boleh menjadi penyelesaian seperti varian rangkaian lawan generatif
(GAN), ia masih menghadapi masalah jika ia dilatih oleh data terhad. Untuk
memperkayakan data dan mengukuhkan keupayaan GAN dalam menjana data,
melengkapkan latihan model generatif oleh penjanaan data berasaskan statistik, seperti
SMOTE, boleh disepadukan. Oleh itu, kajian ini bertujuan untuk membangunkan
model ramalan hasil padi yang tepat dengan mencadangkan Penjanaan Dipertingkat
SMOTE-CTABGAN (SCEQG), integrasi baru SMOTE-ENC dan CTAB-GAN, untuk
menangani had data. Objektif termasuk mereka bentuk kaedah penjanaan data sintetik
baharu, melaksanakan prosedur pemprosesan pasca penjanaan untuk memastikan
pembolehubah kekal praktikal, kekal di antara julat nilai yang berkaitan dengan
pertanian, dan menilai prestasi model ramalan yang dipertingkat menggunakan data
sintetik yang dijana. Menggunakan data hasil padi dari Jabatan Perangkaan Malaysia
(2010-2021) dan data iklim dari Jabatan Meteorologi Malaysia (2010-2021), kajian ini
mensintesis dan mempertingkat set data dengan kaedah yang dicadangkan. Penemuan
menunjukkan keupayaan SCEG untuk menjana set data sintetik berkualiti tinggi yang
berkait rapat dengan set data dunia sebenar. contohnya, SCEG mampu mengurangkan
MSE sehingga 98.44% dalam regressor Pokok Keputusan. Tambahan pula, kaedah
pasca pemprosesan seperti Pembolehubah Had dan Julat Antara Kuartil meningkatkan
prestasi SCEG, dengan Had dan IQR memberikan peningkatan terbaik: pengurangan
60.20% dalam MAE, 86.65% dalam MSE dan 54.86% pengurangan dalam RMSE,
serta 8.15. % peningkatan dalam R-kuadrat. Penyelidikan membuktikan bahawa SCEG
boleh mencipta set data sintetik yang kukuh dan meningkatkan data dunia sebenar,
dengan model yang lebih tepat dan boleh dipercayai untuk meramalkan pengeluaran
beras. Perkaitan penyelidikan terletak pada kapasitinya untuk mengubah unjuran
pertanian, menghasilkan pertimbangan yang lebih termaklum yang boleh
meningkatkan dengan ketara usaha keselamatan makanan negara.

Kata kunci: Data Sintetik, Model Ramalan Pertanian, Rangkaian Adversarial Generatif.
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Abstract

Rice plays a crucial role in ensuring food security and economic stability in Malaysia.
However, rice yield prediction face challenges due to limited and inadequate
agricultural data. Even though synthetic data generation can be a solution such as
variant of generative adversarial network (GAN), it still has a problem if it is trained by
limited data. To enrich the data and strengthen GAN ability in generating data,
complementing the generative model training by statistical-based data generation, such
as SMOTE, can be integrated. Therefore, this study aims to develop an improved rice
yield prediction model by proposing the SMOTE-CTABGAN Enhanced Generation
(SCEQG), a novel integration of SMOTE-ENC and CTAB-GAN, to address data
limitation. This study includes designing a new synthetic data generation method,
implementing a post-generation processing procedure to ensure variable remain
practical, stays between agriculturally relevant range of value, and evaluating the
improved prediction models performance using the generated synthetic data. Using rice
yield data from Department of Statistic Malaysia (2010-2021) and climate data from
Malaysia Meteorological Department (2010-2021), this study synthesized and enhance
the dataset with proposed method. The findings demonstrate SCEG's ability to generate
a high-quality synthetic dataset that is closely related to real-world datasets. for
example, SCEG able to reduce MSE by up to 98.44% in Decision Tree regressors.
Furthermore, post-processing methods such as Variable-base Value Limitation and
Interquartile Range improve SCEG performance, with Limitation and IQR delivering
the best improvements: a 60.20% reduction in MAE, 86.65% in MSE, and 54.86%
reduction in RMSE, as well as an 8.15% increase in R-squared. The research proves
that SCEG can create a strong synthetic dataset and enhance real-world data, with a
more precise and dependable model for predicting rice output. The research's relevance
rests in its capacity to transform agricultural projections, resulting in more informed
judgments that can significantly enhance the nation's food security endeavors.

Keywords: Synthetic Data, Agricultural Preediction Model, Generative Adversarial
Network
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Agriculture plays a vital role in Malaysia's economy and society, providing income and
food security for its population (B. T. Tan et al., 2021). Among all crops, rice holds
strategic importance as a staple food and a focus of agricultural policy. Sustaining rice

productivity is critical for economic resilience and national food availability.

In line with this, accurate rice yield prediction has become an essential tool to support
Malaysia’s national food security efforts (Fatah, 2017; Vaghefi et al., 2013), especially
under frameworks like the Twelfth Malaysian Plan (2021-2025) and the National
Agro-Food Policy 2.0 (2021-2030) (Nazibudin et al., 2025; Sayed et al., 2025)..
Reliable prediction systems help balance supply and demand, manage resources

efficiently, and reduce the risks of shortages and price volatility.

Machine learning (ML) models are increasingly adopted to address these challenges in
food production systems (Sarr & Sultan, 2023; Torsoni et al., 2023). In agriculture,
predictive analytics enables more informed decision-making, allowing for better

cultivation strategies and distribution planning.

A visual example of the rice production trend is presented in Figure 1.1, which shows
the annual paddy output in Malaysia from 1980 to 2022 from research conducted by
Mohd Shafri, et al (2023). This study applied several predictive models, such as
Multivariate Adaptive Regression Splines (MARS), Multiple Linear Regression
(MLR), and Support Vector Regression (SVR). The aim was to assess the relative

efficacy of each model in capturing yield trends. The resultant projections offer
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Appendix A

CLIMATE DATA SAMPLE (TEMPERATURE) (°C)

MM YYYY KEDAH JOHOR PPINANG PERLIS PERAK KELANTAN PAHANG MELAKA SELANGOR SARAWAK SABAH

Jan 2010 28.2 26.4 27.9 273 26.9 25.8 26.3 27.3 27.3 26.2 26.6
Feb 2010 29.4 27.6 29.2 28.7 28.3 26.8 27.6 28.5 28.3 27.2 27.5
Mar 2010 29.4 27.4 29.1 29.1 28.2 27.3 28.0 28.3 28.3 273 28.2
Apr 2010 293 27.4 29.1 28.7 28.3 28.2 28.2 28.2 28.7 27.4 28.1
May 2010 29.7 27.8 29.5 29.2 28.4 28.8 28.4 28.6 28.7 27.7 28.2
Jun 2010 28.3 26.9 28.2 27.6 27.5 27.6 27.5 28.0 28.3 27.1 27.6
Jul 2010 27.6 26.3 27.8 26.9 27.2 27.2 26.9 27.4 27.8 26.5 26.7
Aug 2010 28.0 26.2 28.3 27.5 27.4 27.3 27.0 27.3 28.2 26.8 27.2
Sep 2010 27.6 26.4 27.8 26.8 27.0 26.9 26.9 27.3 27.6 26.5 27.1
Oct 2010 28.1 26.7 28.3 27.0 27.5 27.0 27.0 27.9 28.3 26.8 27.0
Nov 2010 27.3 26.2 27.2 26.5 26.6 26.0 26.4 27.1 27.5 26.5 26.8
Dec 2010 26.8 25.6 26.5 25.8 25.8 25.1 254 26.4 26.8 26.1 26.4
Jan 2011 27.5 25.2 27.1 26.5 26.0 252 25.1 25.8 26.9 25.8 26.0
Feb 2011 28.1 26.3 27.9 27.7 27.0 26.0 26.3 27.3 28.0 26.0 26.0
Mar 2011 27.4 26.1 2% .8 26.8 26.5 26.0 26.2 27.2 27.7 26.3 259
Apr 2011 28.5 26.9 28.3 28.1 27.1 27.3 27.4 27.8 28.1 26.7 26.9
May 2011 28.5 27.2 28.6 27.8 27.7 27.6 27.5 28.1 28.8 27.0 27.4
Jun 2011 28.0 27.0 28.6 27.5 27.8 27.4 27.4 27.9 28.8 27.1 27.4
Jul 2011 27.9 27.2 28.5 273 27.7 27.2 27.1 27.7 28.5 27.1 27.1
Aug 2011 27.2 26.8 27.6 26.8 26.8 27.0 27.2 27.4 28.1 27.0 27.1
Sep 2011 27.5 26.4 27.7 26.9 26.8 26.7 26.9 27.4 28.1 26.9 27.3
Oct 2011 27.7 26.2 274 27.1 26.7 26.0 26.2 27.1 27.6 26.6 27.2
Nov 2011 27.7 26.5 27.3 26.8 26.5 25.8 26.2 26.8 27.3 26.8 26.9
Dec 2011 27.7 26.0 27.5 26.6 26.6 25.5 25.6 26.3 27.4 26.4 26.8
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Appendix B

CLIMATE DATA SAMPLE (HUMIDITY) (%)

MM | YYYY | KEDAH | JOHOR | PPINANG | PERLIS | PERAK | KELANTAN | PAHANG | MELAKA | SELANGOR | SARAWAK | SABAH

Jan 2010 70.9 82.0 75.9 73.5 83.1 83.7 83.8 76.3 79.4 86.2 83.6
Feb 2010 68.8 79.2 74.5 70.2 79.3 80.5 79.5 73.7 77.4 83.8 78.0
Mar 2010 72.1 81.3 76.3 70.1 79.6 79.2 79.4 76.9 78.4 84.2 76.8
Apr 2010 78.6 84.8 80.6 79.0 82.9 80.8 81.7 80.7 79.8 84.1 81.1
May 2010 79.8 84.3 79.7 79.1 83.4 80.5 82.5 81.2 81.9 84.5 824
Jun 2010 82.7 85.0 81.7 82.3 83.1 80.8 83.4 80.0 79.6 84.1 82.8
Jul 2010 83.8 85.7 80.6 83.4 83.7 82.1 84.3 81.0 80.1 85.0 83.9
Aug 2010 83.1 86.4 78.7 82.3 82.0 81.9 83.8 81.7 79.3 83.1 80.9
Sep 2010 83.9 85.3 81.6 83.5 83.1 83.3 83.5 81.6 82.4 84.3 82.3
Oct 2010 82.5 83.9 79.3 83.4 81.8 83.5 84.0 78.5 71.9 82.9 81.3
Nov 2010 84.1 85.9 84.9 84.5 85.2 87.7 85.1 81.6 81.5 84.5 83.8
Dec 2010 83.2 85.6 84.8 83.9 85.7 87.8 86.9 82.9 82.1 85.3 84.6
Jan 2011 73.8 85.2 71.3 76.2 83.0 83.0 85.5 82.8 82.9 86.5 85.8
Feb 2011 73.6 80.2 76.1 71.7 80.1 79.7 80.4 76.5 79.7 85.5 84.9
Mar 2011 81.1 85.3 82.8 81.1 84.0 854 85.9 80.2 81.5 84.9 86.3
Apr 2011 80.2 83.6 79.9 76.6 82.8 80.2 81.5 79.8 82.3 85.2 84.1
May 2011 83.6 86.3 79.9 81.8 824 80.3 83.8 81.1 79.7 84.1 83.6
Jun 2011 85.0 87.3 78.7 83.4 81.1 81.0 83.8 82.6 78.8 84.1 82.6
Jul 2011 83.5 84.3 78.5 81.2 78.7 82.8 83.5 81.8 78.2 83.0 81.2
Aug 2011 85.2 854 81.3 82.7 82.9 82.2 83.0 82.1 80.1 83.2 80.9
Sep 2011 84.9 86.8 82.0 83.1 83.2 82.7 84.3 82.4 78.9 83.9 79.4
Oct 2011 83.2 88.8 83.3 81.9 84.6 86.9 87.2 83.8 82.6 86.0 80.4
Nov 2011 80.0 87.6 83.0 834 86.5 88.1 87.5 85.3 85.8 85.9 83.5
Dec 2011 75.1 87.2 77.9 80.7 83.8 86.7 87.9 85.1 82.7 87.6 84.3
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Appendix C

THE WHOLE RESULT OF EXPERIMENTS

Regression Models

Methods Metrics Linear Lasso. Decision Tree Random Forest XGBRegressor | MLPRegressor
Regression Regression Regressor Regressor

MAE 12310.96808 12261.0922 10448.84906 7860.72434 7610.760659 16004.38525

Baseline MSE 325585024.7 324807317.7 545096039.9 230653632.4 181473557.9 555202720.7

RMSE 18043.97475 18022.41154 23347.29192 15187.28522 13471.21219 23562.74009

R-Squared 0.982417403 0.982459402 0.970563131 0.987543992 0.990199868 0.970017339

MAE 12310.96808 12261.0922 10055.26415 7810.518302 7610.760659 15989.88538

SMOTE- | MSE 325585024.7 324807317.7 528982684.9 220377228.7 181473557.9 543063177.3

ENC RMSE 18043.97475 18022.41154 22999.62358 14845.1079 13471.21219 23303.71596

R-Squared 0.982417403 0.982459402 0.971433302 0.988098949 0.990199868 0.970672912

MAE Avg. 70580.01461 70586.15435 23162.28302 26743.04601 28972.57464 18487.46374

MAE (Best) 18176.58204 18170.60843 1291.830189 5068.154528 3019.251773 16072.32481

MAE (Worst) 130076.4915 130113.5029 108063.1698 82581.15585 78571.2688 20762.07224

MSE Avg. 8452661263 8453019362 6603563031 2188448145 3037236293 659985079

MSE (Best) 615486215 615306142.8 10397950.89 99133945.57 60589838.46 543612882.1

CTAB- | MSE (Worst) 26528428733 26523250975 44588920356 9857590125 10332039887 761489195.6

GAN RMSE Avg. 82376.50059 82376.68395 57358.28903 37349.34995 44284.45136 25643.09216

RMSE (Best) 24808.99464 24805.3652 3224.585382 9956.603114 7783.947486 23315.50733

RMSE (Worst) 162875.5007 9956.603114 8082.604925 23315.50733 38111.63652 38099.57263

R-Squared Avg. 0.543530192 0.543510854 0.643387206 0.881817043 0.835979862 0.964358768

R-Squared (Best) 0.966761844 0.966771568 0.999438479 0.994646461 0.996727962 0.970643226

R-Squared (Worst) -0.432617064 -0.432337449 -1.407939378 0.467659696 0.442037943 0.958877232

MAE Avg. 38063.60176 38066.0283 5180.73148 7256.923479 8640.924794 24977.15093

MAE (Best) 16225.41066 16225.12504 659.307231 3870.579988 1671.848444 13856.73423

SCEG MAE (Worst) 71529.2939 71533.3667 25455.25313 22263.44433 26943.33723 56497.73942

MSE Avg. 3777738785 3778249000 515745152.3 209455250.1 305765351.6 1737206466

MSE (Best) 467444366.8 467246026.6 8524055.056 43745361.59 14911136.07 429305052.6

MSE (Worst) 10729336823 10730809977 3970728231 1216023867 1366453674 7436293174
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Methods

Metrics

Regression Models

Linear

Lasso

Decision Tree

Random Forest

. . XGBRegressor | MLPRegressor
Regression Regression Regressor Regressor
RMSE Avg. 55169.33172 55172.39255 16393.90908 12409.24616 13605.93211 37802.67437
RMSE (Best) 21620.46176 21615.87441 2919.598441 6614.027638 3861.494021 20719.67791
RMSE (Worst) 103582.5122 6614.027638 5282.083705 22677.45903 26595.3457 26596.19504
R-Squared Avg. 0.795990441 0.795962888 0.972148169 0.98868877 0.983487727 0.906185487
R-Squared (Best) 0.974756561 0.974767272 0.999539675 0.997637615 0.999194753 0.976816202
R-Squared (Worst) 0.420582682 0.420503127 0.785568415 0.934330956 0.926207282 0.598417207
MAE Avg. 22395.98517 22395.76799 2981.794184 4836.314055 4199.970129 17926.73393
MAE (Best) 12922.1565 12920.73223 1081.252847 3700.982127 2146.713711 13598.42465
MAE (Worst) 43900.50621 43905.95695 4727.649579 6984.686209 9471.429357 26333.41503
MSE Avg. 1097312531 1097384130 126008830.7 94717793.8 102831363.6 732488529.5
Post- MSE (Best) 348662444.1 348548905.6 12114893.7 36856084.18 23351572.94 422195732.6
processin MSE (Worst) 3513089577 3513836704 365204319.2 209023546.6 242913967.6 1648038237
¢ (Limit) RMSE Avg. 30561.72229 30561.74448 10198.46738 9353.905144 9324.490251 26440.13404
RMSE (Best) 18672.50503 18669.46452 3480.645587 6070.921197 4832.346525 20547.40209
RMSE (Worst) 59271.32171 6070.921197 4832.346525 20547.40209 18704.65852 18706.43225
R-Squared Avg. 0.940741735 0.940737869 0.993195134 0.994884947 0.994446789 0.960443358
R-Squared (Best) 0.981171151 0.981177283 0.999345758 0.998009658 0.998738943 0.977200127
R-Squared (Worst) 0.810282315 0.810241968 0.980277839 0.988712083 0.986881896 0.911000847
MAE Avg. 11385.06438 11377.94522 2844.836995 4808.330976 3029.444757 15182.25259
MAE (Best) 11368.18027 11364.30796 2548.814291 4657.63065 2983.192954 14545.23963
MAE (Worst) 11386.5993 11379.18497 3170.109395 5000.901683 3538.214595 15605.09258
MSE Avg. 287457750.1 287054928.1 124891481.1 107659276.2 67870919.08 503173732.6
Post- MSE (Best) 287363071.8 286949063.3 89165551.41 96657052.04 66413790.7 469025867.1
processin | MSE (Worst) 288499212 288219440.7 164512271.4 120450891 83899331.27 528776400
g (Limit | RMSE Avg. 16954.57651 16942.69226 11075.35873 10372.01364 8233.648348 22428.68787
and IQR) | RMSE (Best) 16951.78668 16939.57093 9442.751263 9831.431841 8149.465669 21657.00503
RMSE (Worst) 16985.26456 9831.431841 8149.465669 21657.00503 16951.78668 16939.57093
R-Squared Avg. 0.984476394 0.984498148 0.993255474 0.994186067 0.996334761 0.972827065
R-Squared (Best) 0.98448151 0.98450386 0.99518478 0.99478022 0.99641345 0.97467115
R-Squared (Worst) 0.98442015 0.98443526 0.99111583 0.99349528 0.99546918 0.97144444
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Appendix D

THE IMPROVEMENT OF PROPOSED METHOD

ent (%) ent (%)
Bascline 7610.760 | 18147355 | 1347121 | (o0 oo ] ] ] _
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Methods Data Best Best Best Best R- ImMrlz]VEem ImN{*?\?em RMSE R-squared
Size MAE MSE RMSE squared ell:t %) ell:t () | 'mprovement (%) Improvement (%)
0 2072621.07 736;)2;742 271 13{).93 0.960624900 172.80% | 305.62% 101.40% 312%
1671.848 | 14911136 | 3861.494 | 0.99919475 . . . )
o1 244 o7 o1 3 78.03% 91.78% 71.34% 0.90%
2234618 | 27900408 | 5282.083 | 0.99849329 | _ ', 84.63% 60.79% 0.83%
SCEG (Before Post- = 233 16 %84 3282%1299 5737(()) 5994 0 998222630
processing) 0.25 45 1 6' ) 6 68.58% 81.90% 57.46% 0.80%
2491220 | 69752964 | 8351.824 | 0.99623312 . , . .
05 i o 026 p 67.27% 61.56% 38.00% 0.61%
3305.339 | 31025918 | 5570.091 | 0.99832450 . P . \
075 py- o 386 ; 56.57% 82.90% 58.65% 0.81%
659.3072 | 8524055. | 2919.598 | 0.99953967 . ] ) ,
| = 0 il p 91.34% 95.30% 78.33% 0.93%
1882.940 | 40427032 | 6358.225 | 0.99781681 , ] , ,
14 yr » e 5 75.26% 77.72% 52.80% 0.76%
; 24413é097 8385969240 915373205 0.995:7150 = 37008 10 0.53%
; 3651%8882 ! 1862‘;008 10857736'82 0.99361467 | 51.92% 34.84% 19.28% 0.34%
\ 193;);98 17811(;912 4226(;.8297 0.99933815 Ut . M T 0.88%
. 913776014 339323729 18%55.40 0.981968607 20.05% | 86.87% 36.70% 0.87%
0 221633;44 1212‘7)23 8 3427717'5 3 0'93463 30951 192.53% | -570.08% -158.86% -5.98%
3638.814 | 85956564 | 9271.276 . . , ,
o1 263 s 30 0.99535808 | 52.19% 52.63% 31.18% 0.52%
) . 1789.525 | 26076182 | 5106.484 | 0.99859180 . . . .
Post-pro (Limit) 0.2 719 35 343 6 76.49% 85.63% 62.09% 0.84%
2146.713 | 23351572 | 4832.346 | 0.99873894 , . . .
095 o 04 oy s 71.79% 87.13% 64.13% 0.85%
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Methods Data Best Best Best Best R- ImMrlz]VEem ImN{*?\?em RMSE R-squared

Size MAE MSE RMSE squared ell:t %) ell:t () | 'mprovement (%) Improvement (%)

s 4167%.9931 8136261587 9029%.5342 0.995360595 45200, 55.16% 33.04% 0.54%

e 28?;1.3678 6794867428 824;23.6962 0.996333068 11% 62.56% 18.81% 0.62%

L e PR e | PG| easw | en7sv 43.24% 0.67%

s 19864(1)5)27 2640;803 513886.365 0.998757416 13.93% 05.45% 61.86% 0.84%

; 2196%.394 286283661 5351(;.;)15 0.998;15428 115% 04930 £0.99% 0.83%

3 43263.;312 112;;95105 10%2355.02 0.99320353 13 15% - ol - 037%

\ 133963.;383 238%11 147 487988.5641 0.998571466 L, 3% - S 0.85%

5 1088 11 .7252 121 1;1893 3485(;.7645 0.999;4575 < o - A 0.92%

N 418113.7269 156;181436 1251(;91.37 0.991154936 - 13778 - 0.14%

ol 29%35292 664173790 81‘2%;‘65 0.99641345 |  60.80% 63.40% 39.50% 0.62%

0 298935292 6641;’790 81‘296';‘65 0.99641345 |  60.80% 63.40% 39.50% 0.62%

095 2573%;:33 664173790 81‘296';‘65 0.99641345 |  66.13% 63.40% 39.50% 0.62%

POSt'pr?éI%m“ and 05 29%352 92 | 664 173790 81‘296'3 05| 0.99641345 | 60.80% 63.40% 39.50% 0.62%

075 27‘;(;'3279 664173790 81‘296';‘65 0.99641345 |  63.99% 63.40% 39.50% 0.62%

| 25‘;%?” 6641;790 81‘296';‘65 0.99641345 | 66.51% | 63.40% 39.50% 0.62%

s 25912'5374 664173790 81‘296';‘65 0.99641345 |  65.95% 63.40% 39.50% 0.62%
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MAE

MSE

Methods Data Best Best Best Best R- Improvem | Improvem RMSE R-squared
1 0, (1)
Size MAE MSE RMSE squared ent (%) ent (%) Improvement (%) Improvement (%)
) 2592&792 664 173790 8 1296';65 0.99641345 65.85% 63.40% 39.50% 0.62%
3 29235292 664173 790 81296'; 65 0.99641345 60.80% 63.40% 39.50% 0.62%
4 2692%'57 2 664173 790 81296'; 65 0.99641345 64.58% 63.40% 39.50% 0.62%
5 29%352 92 | 664 1;790 8 1‘296';‘ 65 1 099641345 | 60.80% | 63.40% 39.50% 0.62%
2735.406 | 83899331 | 9159.657 | 0.99546917 0 0 0 0
10 663 57 314 7 64.06% 53.77% 32.01% 0.53%
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Appendix E

Published Article Based on This Study

Title: Improving Rice Yield Prediction Accuracy Using Regression Models with Climate Data

Authors: Mohamad Farhan Mohamad Mohsin, Muhammad Khalifa Umana, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril
Ismail, Khazainani Salleh, Suhaili Mohd Zahari, Mimi Adilla Sarmani & Neil Gordon

Conference: International Conference on Computing and Informatics

Year: 2024

DOI: https://doi.org/10.1007/978-981-99-9592-9 20

Title: Prediction of Rice Yields in a Changing Climate Using the Mobile Rice Yield Prediction Application

Authors: Mohamad Farhan Mohamad Mohsin, Muhammad Khalifa Umana, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril
Ismail, Khazainani Salleh, Suhaili Mohd Zahari, Mimi Adilla Sarmani & Neil Gordon

Journal: Journal of Information and Communication Technology (JICT) Vol.24, No.2, April 2025

Volume: 24, Issue: 2, Pages: 1-18

Year: 2025

DOI: https://doi.org/10.32890/jict2025.24.2.1

Title: Malaysia Rice Yield Prediction Using Synthetic Data Generation of CTAB-GAN

Authors: Muhammad Khalifa Umana, Mohamad Farhan Mohamad Mohsin, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril
Ismail & Maslina Ismail

Conference: Knowledge Management International Conference (KMICe)

Volume: 49, Pages: 473484

Year: 2025

DOI: https://doi.org/10.32890/jict2025.24.2.1
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