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Abstrak 

Beras memainkan peranan penting dalam memastikan keselamatan makanan dan 
kestabilan ekonomi di Malaysia. Walau bagaimanapun, ramalan hasil padi menghadapi 
cabaran kerana data pertanian yang terhad dan tidak mencukupi. Walaupun penjanaan 
data sintetik boleh menjadi penyelesaian seperti varian rangkaian lawan generatif 
(GAN), ia masih menghadapi masalah jika ia dilatih oleh data terhad. Untuk 
memperkayakan data dan mengukuhkan keupayaan GAN dalam menjana data, 
melengkapkan latihan model generatif oleh penjanaan data berasaskan statistik, seperti 
SMOTE, boleh disepadukan. Oleh itu, kajian ini bertujuan untuk membangunkan 
model ramalan hasil padi yang tepat dengan mencadangkan Penjanaan Dipertingkat 
SMOTE-CTABGAN (SCEG), integrasi baru SMOTE-ENC dan CTAB-GAN, untuk 
menangani had data. Objektif termasuk mereka bentuk kaedah penjanaan data sintetik 
baharu, melaksanakan prosedur pemprosesan pasca penjanaan untuk memastikan 
pembolehubah kekal praktikal, kekal di antara julat nilai yang berkaitan dengan 
pertanian, dan menilai prestasi model ramalan yang dipertingkat menggunakan data 
sintetik yang dijana. Menggunakan data hasil padi dari Jabatan Perangkaan Malaysia 
(2010-2021) dan data iklim dari Jabatan Meteorologi Malaysia (2010-2021), kajian ini 
mensintesis dan mempertingkat set data dengan kaedah yang dicadangkan. Penemuan 
menunjukkan keupayaan SCEG untuk menjana set data sintetik berkualiti tinggi yang 
berkait rapat dengan set data dunia sebenar. contohnya, SCEG mampu mengurangkan 
MSE sehingga 98.44% dalam regressor Pokok Keputusan. Tambahan pula, kaedah 
pasca pemprosesan seperti Pembolehubah Had dan Julat Antara Kuartil meningkatkan 
prestasi SCEG, dengan Had dan IQR memberikan peningkatan terbaik: pengurangan 
60.20% dalam MAE, 86.65% dalam MSE dan 54.86% pengurangan dalam RMSE, 
serta 8.15. % peningkatan dalam R-kuadrat. Penyelidikan membuktikan bahawa SCEG 
boleh mencipta set data sintetik yang kukuh dan meningkatkan data dunia sebenar, 
dengan model yang lebih tepat dan boleh dipercayai untuk meramalkan pengeluaran 
beras. Perkaitan penyelidikan terletak pada kapasitinya untuk mengubah unjuran 
pertanian, menghasilkan pertimbangan yang lebih termaklum yang boleh 
meningkatkan dengan ketara usaha keselamatan makanan negara. 

Kata kunci: Data Sintetik, Model Ramalan Pertanian, Rangkaian Adversarial Generatif. 
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Abstract 

Rice plays a crucial role in ensuring food security and economic stability in Malaysia. 
However, rice yield prediction face challenges due to limited and inadequate 
agricultural data. Even though synthetic data generation can be a solution such as 
variant of generative adversarial network (GAN), it still has a problem if it is trained by 
limited data. To enrich the data and strengthen GAN ability in generating data, 
complementing the generative model training by statistical-based data generation, such 
as SMOTE, can be integrated. Therefore, this study aims to develop an improved rice 
yield prediction model by proposing the SMOTE-CTABGAN Enhanced Generation 
(SCEG), a novel integration of SMOTE-ENC and CTAB-GAN, to address data 
limitation. This study includes designing a new synthetic data generation method, 
implementing a post-generation processing procedure to ensure variable remain 
practical, stays between agriculturally relevant range of value, and evaluating the 
improved prediction models performance using the generated synthetic data. Using rice 
yield data from Department of Statistic Malaysia (2010-2021) and climate data from 
Malaysia Meteorological Department (2010-2021), this study synthesized and enhance 
the dataset with proposed method. The findings demonstrate SCEG's ability to generate 
a high-quality synthetic dataset that is closely related to real-world datasets. for 
example, SCEG able to reduce MSE by up to 98.44% in Decision Tree regressors. 
Furthermore, post-processing methods such as Variable-base Value Limitation and 
Interquartile Range improve SCEG performance, with Limitation and IQR delivering 
the best improvements: a 60.20% reduction in MAE, 86.65% in MSE, and 54.86% 
reduction in RMSE, as well as an 8.15% increase in R-squared. The research proves 
that SCEG can create a strong synthetic dataset and enhance real-world data, with a 
more precise and dependable model for predicting rice output. The research's relevance 
rests in its capacity to transform agricultural projections, resulting in more informed 
judgments that can significantly enhance the nation's food security endeavors. 

Keywords: Synthetic Data, Agricultural Preediction Model, Generative Adversarial 
Network 
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1 CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Agriculture plays a vital role in Malaysia's economy and society, providing income and 

food security for its population (B. T. Tan et al., 2021). Among all crops, rice holds 

strategic importance as a staple food and a focus of agricultural policy. Sustaining rice 

productivity is critical for economic resilience and national food availability. 

In line with this, accurate rice yield prediction has become an essential tool to support 

Malaysia’s national food security efforts (Fatah, 2017; Vaghefi et al., 2013), especially 

under frameworks like the Twelfth Malaysian Plan (2021–2025) and the National 

Agro-Food Policy 2.0 (2021–2030) (Nazibudin et al., 2025; Sayed et al., 2025).. 

Reliable prediction systems help balance supply and demand, manage resources 

efficiently, and reduce the risks of shortages and price volatility. 

Machine learning (ML) models are increasingly adopted to address these challenges in 

food production systems (Sarr & Sultan, 2023; Torsoni et al., 2023). In agriculture, 

predictive analytics enables more informed decision-making, allowing for better 

cultivation strategies and distribution planning. 

A visual example of the rice production trend is presented in Figure 1.1, which shows 

the annual paddy output in Malaysia from 1980 to 2022 from research conducted by 

Mohd Shafri, et al (2023). This study applied several predictive models, such as 

Multivariate Adaptive Regression Splines (MARS), Multiple Linear Regression 

(MLR), and Support Vector Regression (SVR). The aim was to assess the relative 

efficacy of each model in capturing yield trends. The resultant projections offer 
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Appendix A 

CLIMATE DATA SAMPLE (TEMPERATURE) (OC) 

MM YYYY KEDAH JOHOR PPINANG PERLIS PERAK KELANTAN PAHANG MELAKA  SELANGOR SARAWAK SABAH 
Jan 2010 28.2 26.4 27.9 27.3 26.9 25.8 26.3 27.3 27.3 26.2 26.6 
Feb 2010 29.4 27.6 29.2 28.7 28.3 26.8 27.6 28.5 28.3 27.2 27.5 
Mar 2010 29.4 27.4 29.1 29.1 28.2 27.3 28.0 28.3 28.3 27.3 28.2 
Apr 2010 29.3 27.4 29.1 28.7 28.3 28.2 28.2 28.2 28.7 27.4 28.1 
May 2010 29.7 27.8 29.5 29.2 28.4 28.8 28.4 28.6 28.7 27.7 28.2 
Jun 2010 28.3 26.9 28.2 27.6 27.5 27.6 27.5 28.0 28.3 27.1 27.6 
Jul 2010 27.6 26.3 27.8 26.9 27.2 27.2 26.9 27.4 27.8 26.5 26.7 
Aug 2010 28.0 26.2 28.3 27.5 27.4 27.3 27.0 27.3 28.2 26.8 27.2 
Sep 2010 27.6 26.4 27.8 26.8 27.0 26.9 26.9 27.3 27.6 26.5 27.1 
Oct 2010 28.1 26.7 28.3 27.0 27.5 27.0 27.0 27.9 28.3 26.8 27.0 
Nov 2010 27.3 26.2 27.2 26.5 26.6 26.0 26.4 27.1 27.5 26.5 26.8 
Dec 2010 26.8 25.6 26.5 25.8 25.8 25.1 25.4 26.4 26.8 26.1 26.4 
Jan 2011 27.5 25.2 27.1 26.5 26.0 25.2 25.1 25.8 26.9 25.8 26.0 
Feb 2011 28.1 26.3 27.9 27.7 27.0 26.0 26.3 27.3 28.0 26.0 26.0 
Mar 2011 27.4 26.1 27.3 26.8 26.5 26.0 26.2 27.2 27.7 26.3 25.9 
Apr 2011 28.5 26.9 28.3 28.1 27.1 27.3 27.4 27.8 28.1 26.7 26.9 
May 2011 28.5 27.2 28.6 27.8 27.7 27.6 27.5 28.1 28.8 27.0 27.4 
Jun 2011 28.0 27.0 28.6 27.5 27.8 27.4 27.4 27.9 28.8 27.1 27.4 
Jul 2011 27.9 27.2 28.5 27.3 27.7 27.2 27.1 27.7 28.5 27.1 27.1 
Aug 2011 27.2 26.8 27.6 26.8 26.8 27.0 27.2 27.4 28.1 27.0 27.1 
Sep 2011 27.5 26.4 27.7 26.9 26.8 26.7 26.9 27.4 28.1 26.9 27.3 
Oct 2011 27.7 26.2 27.4 27.1 26.7 26.0 26.2 27.1 27.6 26.6 27.2 
Nov 2011 27.7 26.5 27.3 26.8 26.5 25.8 26.2 26.8 27.3 26.8 26.9 
Dec 2011 27.7 26.0 27.5 26.6 26.6 25.5 25.6 26.3 27.4 26.4 26.8 
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Appendix B 

CLIMATE DATA SAMPLE (HUMIDITY) (%) 

MM YYYY KEDAH JOHOR PPINANG PERLIS PERAK KELANTAN PAHANG MELAKA  SELANGOR SARAWAK SABAH 
Jan 2010 70.9 82.0 75.9 73.5 83.1 83.7 83.8 76.3 79.4 86.2 83.6 
Feb 2010 68.8 79.2 74.5 70.2 79.3 80.5 79.5 73.7 77.4 83.8 78.0 
Mar 2010 72.1 81.3 76.3 70.1 79.6 79.2 79.4 76.9 78.4 84.2 76.8 
Apr 2010 78.6 84.8 80.6 79.0 82.9 80.8 81.7 80.7 79.8 84.1 81.1 
May 2010 79.8 84.3 79.7 79.1 83.4 80.5 82.5 81.2 81.9 84.5 82.4 
Jun 2010 82.7 85.0 81.7 82.3 83.1 80.8 83.4 80.0 79.6 84.1 82.8 
Jul 2010 83.8 85.7 80.6 83.4 83.7 82.1 84.3 81.0 80.1 85.0 83.9 
Aug 2010 83.1 86.4 78.7 82.3 82.0 81.9 83.8 81.7 79.3 83.1 80.9 
Sep 2010 83.9 85.3 81.6 83.5 83.1 83.3 83.5 81.6 82.4 84.3 82.3 
Oct 2010 82.5 83.9 79.3 83.4 81.8 83.5 84.0 78.5 77.9 82.9 81.3 
Nov 2010 84.1 85.9 84.9 84.5 85.2 87.7 85.1 81.6 81.5 84.5 83.8 
Dec 2010 83.2 85.6 84.8 83.9 85.7 87.8 86.9 82.9 82.1 85.3 84.6 
Jan 2011 73.8 85.2 77.3 76.2 83.0 83.0 85.5 82.8 82.9 86.5 85.8 
Feb 2011 73.6 80.2 76.1 71.7 80.1 79.7 80.4 76.5 79.7 85.5 84.9 
Mar 2011 81.1 85.3 82.8 81.1 84.0 85.4 85.9 80.2 81.5 84.9 86.3 
Apr 2011 80.2 83.6 79.9 76.6 82.8 80.2 81.5 79.8 82.3 85.2 84.1 
May 2011 83.6 86.3 79.9 81.8 82.4 80.3 83.8 81.1 79.7 84.1 83.6 
Jun 2011 85.0 87.3 78.7 83.4 81.1 81.0 83.8 82.6 78.8 84.1 82.6 
Jul 2011 83.5 84.3 78.5 81.2 78.7 82.8 83.5 81.8 78.2 83.0 81.2 
Aug 2011 85.2 85.4 81.3 82.7 82.9 82.2 83.0 82.1 80.1 83.2 80.9 
Sep 2011 84.9 86.8 82.0 83.1 83.2 82.7 84.3 82.4 78.9 83.9 79.4 
Oct 2011 83.2 88.8 83.3 81.9 84.6 86.9 87.2 83.8 82.6 86.0 80.4 
Nov 2011 80.0 87.6 83.0 83.4 86.5 88.1 87.5 85.3 85.8 85.9 83.5 
Dec 2011 75.1 87.2 77.9 80.7 83.8 86.7 87.9 85.1 82.7 87.6 84.3 
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Appendix C 

THE WHOLE RESULT OF EXPERIMENTS 

Methods Metrics 
Regression Models 

Linear 
Regression 

Lasso 
Regression 

Decision Tree 
Regressor 

Random Forest 
Regressor XGBRegressor MLPRegressor 

Baseline 

MAE 12310.96808 12261.0922 10448.84906 7860.72434 7610.760659 16004.38525 
MSE 325585024.7 324807317.7 545096039.9 230653632.4 181473557.9 555202720.7 
RMSE 18043.97475 18022.41154 23347.29192 15187.28522 13471.21219 23562.74009 
R-Squared 0.982417403 0.982459402 0.970563131 0.987543992 0.990199868 0.970017339 

SMOTE-
ENC 

MAE 12310.96808 12261.0922 10055.26415 7810.518302 7610.760659 15989.88538 
MSE 325585024.7 324807317.7 528982684.9 220377228.7 181473557.9 543063177.3 
RMSE 18043.97475 18022.41154 22999.62358 14845.1079 13471.21219 23303.71596 
R-Squared 0.982417403 0.982459402 0.971433302 0.988098949 0.990199868 0.970672912 

CTAB-
GAN 

MAE Avg. 70580.01461 70586.15435 23162.28302 26743.04601 28972.57464 18487.46374 
MAE (Best) 18176.58204 18170.60843 1291.830189 5068.154528 3019.251773 16072.32481 
MAE (Worst) 130076.4915 130113.5029 108063.1698 82581.15585 78571.2688 20762.07224 
MSE Avg. 8452661263 8453019362 6603563031 2188448145 3037236293 659985079 
MSE (Best) 615486215 615306142.8 10397950.89 99133945.57 60589838.46 543612882.1 
MSE (Worst) 26528428733 26523250975 44588920356 9857590125 10332039887 761489195.6 
RMSE Avg. 82376.50059 82376.68395 57358.28903 37349.34995 44284.45136 25643.09216 
RMSE (Best) 24808.99464 24805.3652 3224.585382 9956.603114 7783.947486 23315.50733 
RMSE (Worst) 162875.5007 9956.603114 8082.604925 23315.50733 38111.63652 38099.57263 
R-Squared Avg. 0.543530192 0.543510854 0.643387206 0.881817043 0.835979862 0.964358768 
R-Squared (Best) 0.966761844 0.966771568 0.999438479 0.994646461 0.996727962 0.970643226 
R-Squared (Worst) -0.432617064 -0.432337449 -1.407939378 0.467659696 0.442037943 0.958877232 

SCEG 

MAE Avg. 38063.60176 38066.0283 5180.73148 7256.923479 8640.924794 24977.15093 
MAE (Best) 16225.41066 16225.12504 659.307231 3870.579988 1671.848444 13856.73423 
MAE (Worst) 71529.2939 71533.3667 25455.25313 22263.44433 26943.33723 56497.73942 
MSE Avg. 3777738785 3778249000 515745152.3 209455250.1 305765351.6 1737206466 
MSE (Best) 467444366.8 467246026.6 8524055.056 43745361.59 14911136.07 429305052.6 
MSE (Worst) 10729336823 10730809977 3970728231 1216023867 1366453674 7436293174 
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Methods Metrics 
Regression Models 

Linear 
Regression 

Lasso 
Regression 

Decision Tree 
Regressor 

Random Forest 
Regressor XGBRegressor MLPRegressor 

RMSE Avg. 55169.33172 55172.39255 16393.90908 12409.24616 13605.93211 37802.67437 
RMSE (Best) 21620.46176 21615.87441 2919.598441 6614.027638 3861.494021 20719.67791 
RMSE (Worst) 103582.5122 6614.027638 5282.083705 22677.45903 26595.3457 26596.19504 
R-Squared Avg. 0.795990441 0.795962888 0.972148169 0.98868877 0.983487727 0.906185487 
R-Squared (Best) 0.974756561 0.974767272 0.999539675 0.997637615 0.999194753 0.976816202 
R-Squared (Worst) 0.420582682 0.420503127 0.785568415 0.934330956 0.926207282 0.598417207 

Post-
processin
g (Limit) 

MAE Avg. 22395.98517 22395.76799 2981.794184 4836.314055 4199.970129 17926.73393 
MAE (Best) 12922.1565 12920.73223 1081.252847 3700.982127 2146.713711 13598.42465 
MAE (Worst) 43900.50621 43905.95695 4727.649579 6984.686209 9471.429357 26333.41503 
MSE Avg. 1097312531 1097384130 126008830.7 94717793.8 102831363.6 732488529.5 
MSE (Best) 348662444.1 348548905.6 12114893.7 36856084.18 23351572.94 422195732.6 
MSE (Worst) 3513089577 3513836704 365204319.2 209023546.6 242913967.6 1648038237 
RMSE Avg. 30561.72229 30561.74448 10198.46738 9353.905144 9324.490251 26440.13404 
RMSE (Best) 18672.50503 18669.46452 3480.645587 6070.921197 4832.346525 20547.40209 
RMSE (Worst) 59271.32171 6070.921197 4832.346525 20547.40209 18704.65852 18706.43225 
R-Squared Avg. 0.940741735 0.940737869 0.993195134 0.994884947 0.994446789 0.960443358 
R-Squared (Best) 0.981171151 0.981177283 0.999345758 0.998009658 0.998738943 0.977200127 
R-Squared (Worst) 0.810282315 0.810241968 0.980277839 0.988712083 0.986881896 0.911000847 

Post-
processin
g (Limit 

and IQR) 

MAE Avg. 11385.06438 11377.94522 2844.836995 4808.330976 3029.444757 15182.25259 
MAE (Best) 11368.18027 11364.30796 2548.814291 4657.63065 2983.192954 14545.23963 
MAE (Worst) 11386.5993 11379.18497 3170.109395 5000.901683 3538.214595 15605.09258 
MSE Avg. 287457750.1 287054928.1 124891481.1 107659276.2 67870919.08 503173732.6 
MSE (Best) 287363071.8 286949063.3 89165551.41 96657052.04 66413790.7 469025867.1 
MSE (Worst) 288499212 288219440.7 164512271.4 120450891 83899331.27 528776400 
RMSE Avg. 16954.57651 16942.69226 11075.35873 10372.01364 8233.648348 22428.68787 
RMSE (Best) 16951.78668 16939.57093 9442.751263 9831.431841 8149.465669 21657.00503 
RMSE (Worst) 16985.26456 9831.431841 8149.465669 21657.00503 16951.78668 16939.57093 
R-Squared Avg. 0.984476394 0.984498148 0.993255474 0.994186067 0.996334761 0.972827065 
R-Squared (Best) 0.98448151 0.98450386 0.99518478 0.99478022 0.99641345 0.97467115 
R-Squared (Worst) 0.98442015 0.98443526 0.99111583 0.99349528 0.99546918 0.97144444 
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Appendix D 

THE IMPROVEMENT OF PROPOSED METHOD  

Methods Data 
Size 

Best 
MAE 

Best 
MSE 

Best 
RMSE 

Best R-
squared 

MAE 
Improvem

ent (%) 

MSE 
Improvem

ent (%) 

RMSE 
Improvement (%) 

R-squared 
Improvement (%) 

Baseline - 
7610.760

66 
18147355

7.9 
13471.21

22 0.99019987 - - - - 

SMOTE-ENC - 
7610.760

66 
18147355

7.9 
13471.21

22 0.99019987 No improvement for the best model. but SMOTE-ENC has the better value in 
Decision Tree. Random Forest. and MLP Regression (see Table 4.2) 

CTAB-GAN 

0.1 
3019.251

773 
60589838

.46 
7783.947

486 
0.99672796

2 60.33% 66.61% 42.22% 0.65% 

0.2 
4912.661

561 
17301457

2.8 
13153.50

04 
0.99065667

9 35.45% 4.66% 2.36% 0.05% 

0.25 
1291.830

189 
10397950

.89 
3224.585

382 
0.99943847

9 83.03% 94.27% 76.06% 0.92% 

0.5 
8824.458

679 
28325753

3.4 
16830.25

649 
0.98470321

9 -15.95% -56.09% -24.93% -0.56% 

0.75 
10523.37

472 
40600541

1.5 
20149.57

596 
0.97807445

4 -38.27% -123.73% -49.58% -1.24% 

1 
6118.528

302 
18823943

9.9 
13720.03

79 
0.98983448

9 19.61% -3.73% -1.85% -0.04% 

1.5 
12658.28

302 
57467785

6.2 
23972.43

951 
0.96896562

1 -66.32% -216.67% -77.95% -2.19% 

2 
12722.67

925 
64434864

5.2 
25384.02

342 
0.96520318

4 -67.17% -255.06% -88.43% -2.59% 

3 
18965.19

492 
66839289

9.7 
25853.29

572 0.96390472 -149.19% -268.31% -91.92% -2.73% 

4 
20476.72

566 
76148919

5.6 
27595.09

369 
0.95887723

2 -169.05% -319.61% -104.84% -3.27% 

5 
17749.34

069 
58427602

6.2 
24171.80

23 0.96844729 -133.21% -221.96% -79.43% -2.25% 
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Methods Data 
Size 

Best 
MAE 

Best 
MSE 

Best 
RMSE 

Best R-
squared 

MAE 
Improvem

ent (%) 

MSE 
Improvem

ent (%) 

RMSE 
Improvement (%) 

R-squared 
Improvement (%) 

10 
20762.07

224 
73608742

2.2 
27130.93

11 
0.96024900

6 -172.80% -305.62% -101.40% -3.12% 

SCEG (Before Post-
processing)  

0.1 
1671.848

444 
14911136

.07 
3861.494

021 
0.99919475

3 78.03% 91.78% 71.34% 0.90% 

0.2 
2234.618

969 
27900408

.27 
5282.083

705 
0.99849329

2 70.64% 84.63% 60.79% 0.83% 

0.25 
2391.084

45 
32844299

.11 
5730.994

6 
0.99822630

6 68.58% 81.90% 57.46% 0.80% 

0.5 
2491.220

158 
69752964

.56 
8351.824

026 
0.99623312

5 67.27% 61.56% 38.00% 0.61% 

0.75 
3305.339

377 
31025918

.05 
5570.091

386 
0.99832450

5 56.57% 82.90% 58.65% 0.81% 

1 
659.3072

31 
8524055.

056 
2919.598

441 
0.99953967

5 91.34% 95.30% 78.33% 0.93% 

1.5 
1882.940

466 
40427032

.76 
6358.225

598 
0.99781681

5 75.26% 77.72% 52.80% 0.76% 

2 
2443.097

18 
83856240

.99 
9157.305

334 
0.99547150

4 67.90% 53.79% 32.02% 0.53% 

3 
3658.882

138 
11824008

6.7 
10873.82

576 0.99361467 51.92% 34.84% 19.28% 0.34% 

4 
1939.398

22 
17810912

.15 
4220.297

638 
0.99903815

6 74.52% 90.19% 68.67% 0.88% 

5 
9137.014

76 
33912729

0.3 
18415.40

905 
0.98168607

9 -20.05% -86.87% -36.70% -0.87% 

10 
22263.44

433 
12160238

67 
34871.53

377 
0.93433095

6 -192.53% -570.08% -158.86% -5.98% 

Post-pro (Limit) 

0.1 
3638.814

863 
85956564

.59 
9271.276

319 0.99535808 52.19% 52.63% 31.18% 0.52% 

0.2 
1789.525

719 
26076182

.35 
5106.484

343 
0.99859180

6 76.49% 85.63% 62.09% 0.84% 

0.25 
2146.713

711 
23351572

.94 
4832.346

525 
0.99873894

3 71.79% 87.13% 64.13% 0.85% 



191 

Methods Data 
Size 

Best 
MAE 

Best 
MSE 

Best 
RMSE 

Best R-
squared 

MAE 
Improvem

ent (%) 

MSE 
Improvem

ent (%) 

RMSE 
Improvement (%) 

R-squared 
Improvement (%) 

0.5 
4163.931

709 
81366587

.21 
9020.342

965 
0.99560595

3 45.29% 55.16% 33.04% 0.54% 

0.75 
2883.678

943 
67946428

.07 
8242.962

336 
0.99633068

3 62.11% 62.56% 38.81% 0.62% 

1 
2880.694

672 
58472227

.08 
7646.713

482 
0.99684231

9 62.15% 67.78% 43.24% 0.67% 

1.5 
1984.027

602 
26402803

.8 
5138.365

869 
0.99857416

7 73.93% 85.45% 61.86% 0.84% 

2 
2195.994

689 
28622661

.84 
5350.015

125 
0.99845428

8 71.15% 84.23% 60.29% 0.83% 

3 
4326.812

642 
11289105

7.5 
10625.02

035 
0.99390353

4 43.15% 37.79% 21.13% 0.37% 

4 
1336.883

934 
23801147

.61 
4878.641

985 
0.99871466

5 82.43% 86.88% 63.78% 0.85% 

5 
1081.252

847 
12114893

.7 
3480.645

587 
0.99934575

8 85.79% 93.32% 74.16% 0.92% 

10 
4181.269

137 
15648436

8.1 
12509.37

121 
0.99154936

1 45.06% 13.77% 7.14% 0.14% 

Post-pro (Limit and 
IQR) 

0.1 
2983.192

954 
66413790

.7 
8149.465

669 0.99641345 60.80% 63.40% 39.50% 0.62% 

0.2 
2983.192

954 
66413790

.7 
8149.465

669 0.99641345 60.80% 63.40% 39.50% 0.62% 

0.25 
2578.133

374 
66413790

.7 
8149.465

669 0.99641345 66.13% 63.40% 39.50% 0.62% 

0.5 
2983.192

954 
66413790

.7 
8149.465

669 0.99641345 60.80% 63.40% 39.50% 0.62% 

0.75 
2740.279

213 
66413790

.7 
8149.465

669 0.99641345 63.99% 63.40% 39.50% 0.62% 

1 
2548.814

291 
66413790

.7 
8149.465

669 0.99641345 66.51% 63.40% 39.50% 0.62% 

1.5 
2591.374

145 
66413790

.7 
8149.465

669 0.99641345 65.95% 63.40% 39.50% 0.62% 
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Methods Data 
Size 

Best 
MAE 

Best 
MSE 

Best 
RMSE 

Best R-
squared 

MAE 
Improvem

ent (%) 

MSE 
Improvem

ent (%) 

RMSE 
Improvement (%) 

R-squared 
Improvement (%) 

2 
2598.792

67 
66413790

.7 
8149.465

669 0.99641345 65.85% 63.40% 39.50% 0.62% 

3 
2983.192

954 
66413790

.7 
8149.465

669 0.99641345 60.80% 63.40% 39.50% 0.62% 

4 
2695.772

205 
66413790

.7 
8149.465

669 0.99641345 64.58% 63.40% 39.50% 0.62% 

5 
2983.192

954 
66413790

.7 
8149.465

669 0.99641345 60.80% 63.40% 39.50% 0.62% 

10 
2735.406

663 
83899331

.27 
9159.657

814 
0.99546917

7 64.06% 53.77% 32.01% 0.53% 
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Appendix E 

Published Article Based on This Study 

Title: Improving Rice Yield Prediction Accuracy Using Regression Models with Climate Data 
Authors: Mohamad Farhan Mohamad Mohsin, Muhammad Khalifa Umana, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril 
Ismail, Khazainani Salleh, Suhaili Mohd Zahari, Mimi Adilla Sarmani & Neil Gordon 
Conference: International Conference on Computing and Informatics 
Year: 2024 
DOI: https://doi.org/10.1007/978-981-99-9592-9_20 

Title: Prediction of Rice Yields in a Changing Climate Using the Mobile Rice Yield Prediction Application 
Authors: Mohamad Farhan Mohamad Mohsin, Muhammad Khalifa Umana, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril 
Ismail, Khazainani Salleh, Suhaili Mohd Zahari, Mimi Adilla Sarmani & Neil Gordon 
Journal: Journal of Information and Communication Technology (JICT) Vol.24, No.2, April 2025 
Volume: 24, Issue: 2, Pages: 1-18 
Year: 2025 
DOI: https://doi.org/10.32890/jict2025.24.2.1 

Title: Malaysia Rice Yield Prediction Using Synthetic Data Generation of CTAB-GAN 
Authors: Muhammad Khalifa Umana, Mohamad Farhan Mohamad Mohsin, Mohamad Ghozali Hassan, Kamal Imran Mohd Sharif, Mohd Azril 
Ismail & Maslina Ismail 
Conference: Knowledge Management International Conference (KMICe) 
Volume: 49, Pages: 473–484 
Year: 2025 
DOI: https://doi.org/10.32890/jict2025.24.2.1 
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