Ayinla, Chindo Abdulrasaq (2021) Ordered Logit regression model for predicting magnitude of flood along Foma River Kwara Nigeria. Doctoral thesis, Universiti Utara Malaysia.
![[thumbnail of s901651_01.pdf]](https://etd.uum.edu.my/style/images/fileicons/text.png)
s901651_01.pdf
Restricted to Repository staff only until 25 March 2024.
Download (4MB) | Request a copy
![[thumbnail of s901651_02.pdf]](https://etd.uum.edu.my/style/images/fileicons/text.png)
s901651_02.pdf
Download (1MB)
![[thumbnail of s901651_references.docx]](https://etd.uum.edu.my/style/images/fileicons/text.png)
s901651_references.docx
Download (95kB)
![[thumbnail of depositpermission_s901651.pdf]](https://etd.uum.edu.my/style/images/fileicons/text.png)
depositpermission_s901651.pdf
Restricted to Repository staff only
Download (75kB) | Request a copy
Abstract
Flood is a natural disaster that has become a major concern to the Nigerian government. Despite the numerous hazards caused by the flood, little attention has been directed towards evaluating the flood hazards through the river condition and vulnerability components along the river areas. Hence, this study examines the river condition and vulnerability components to determine the cross-sectional variables in predicting the magnitude of flood along Foma River areas. Data extracted from Geographic Information System (GIS) and site observations were used in generating the cross-sectional variables along the river areas. From the dataset, eight crosssectional variables were obtained including 530 structures of Foma River. The Ordered Logit Regression (OLR) Models were built to predict the magnitude of flood. The model was evaluated using average values of accuracy, precision, recall, and F1-score
which were derived from the 10-fold cross validation procedure. The F1-score was able to harmonize and reduce the errors in regulating the imbalanced class distributions. It was also revealed that river watersheds, structure vulnerable status, vulnerable structures along the river, locations of bridges and culverts, sizes occupied by bridges and culverts, and river pollution are significantly contributing to the magnitude of the flood along the Foma River. This study produced a complementary approach to flood prediction along the Foma River, as well as provided the Nigerian government and practitioners a new source of information in addressing problems related to river flooding in Nigeria.
Item Type: | Thesis (Doctoral) |
---|---|
Supervisor : | Mohd Shaharanee, IzwanNizal and Mohd Jamil, Jastini |
Item ID: | 9335 |
Uncontrolled Keywords: | flood hazard, cross-sectional study, prediction flood magnitude, cross validation, Order Logit Regression Model |
Subjects: | D History General and Old World > DT Africa Q Science > QE Geology |
Divisions: | Awang Had Salleh Graduate School of Arts & Sciences |
Date Deposited: | 09 May 2022 01:14 |
Last Modified: | 09 May 2022 03:26 |
Department: | Awang Had Salleh Graduate School of Arts & Sciences |
Name: | Mohd Shaharanee, IzwanNizal and Mohd Jamil, Jastini |
URI: | https://etd.uum.edu.my/id/eprint/9335 |