UUM ETD | Universiti Utara Malaysian Electronic Theses and Dissertation
FAQs | Feedback | Search Tips | Sitemap

A prototype knowledge based fuzzy analytic network process system for sustainable manufacturing indicator

Adam Shariff, Adli Aminuddin (2015) A prototype knowledge based fuzzy analytic network process system for sustainable manufacturing indicator. PhD. thesis, Universiti Utara Malaysia.

[img] Text
s93356.pdf
Restricted to Registered users only

Download (3MB)
[img]
Preview
Text
s93356_abstract.pdf

Download (837kB) | Preview

Abstract

Sustainable manufacturing is a relatively new but a very complex manufacturing paradigm. The complexity arises as this paradigm covers three interdependent yet mutually supporting sustainability dimensions of economic, environmental and social. In a further step to embark on the essence of sustainable manufacturing, the development of appropriate indicators needs to be emphasized as compared to other efforts. Regrettably, the existing indicators have several drawbacks that may hamper the accuracy of sustainability performance assessment of an organization. As such, there are only a few standardized indicator mechanisms which can suit specific requirements of various manufacturing organizations. Hence, this study suggests a novel Knowledge-Based Fuzzy Analytic Network Process (KBFANP) system which can assist the decision making process of sustainable manufacturing by developing a new indicator mechanism. The KBFANP system comprises of four major phases, namely Initialization, Selection, Evaluation and Prioritization. The system incorporates the advantages of Knowledge-Based System Fuzzy Set Theory and Analytic Network Process into a single unified approach as a standardized indicator, which is applicable to all types of problem setting. A prototype of KBFANP system was developed, tested and analyzed on three experimental data sets and two real manufacturing settings. The system was able to provide solutions on the areas that need improvement with different levels of priority. This study also supports the notion of lean and green manufacturing as the elementary foundation of sustainable manufacturing implementation. The proposed KBFANP system can act as an advisory Decision Support System which is beneficial to both academia and industrial practitioners.

Item Type: Thesis (PhD.)
Uncontrolled Keywords: Sustainable manufacturing indicator, Knowledge-based system, Fuzzy analytic network process
Subjects: T Technology > T Technology (General)
T Technology > TS Manufactures
Divisions: Awang Had Salleh Graduate School of Arts & Sciences
Depositing User: Mr. Badrulsaman Hamid
Date Deposited: 31 Dec 2015 07:59
Last Modified: 12 Apr 2016 01:27
URI: http://etd.uum.edu.my/id/eprint/5367

Actions (login required)

View Item View Item